基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程

详情点击链接:基于ChatGPT4+Python近红外光谱数据分析及机器学习与深度学习建模教程

第一:GPT4

1、ChatGPT(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

2、ChatGPT对话初体验

3、GPT-4与GPT-3.5的区别,以及与国内大语言模型(文心一言、星火等)的区别

4、ChatGPT科研必备插件(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

5、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

6、GPT Store

第二:GPT4 提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于模板的ChatGPT提示词优化

4、利用ChatGPT4 及插件优化提示词

5、通过promptperfect.jina.ai优化提示词

6、利用ChatGPT4 及插件生成提示词

7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、案例演示:利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行

第三:GPT4助力信息检索与总结分析

1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT4 及插件实现联网检索文献

3、利用ChatGPT4及插件总结分析文献内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、利用ChatGPT4 及插件总结Youtube视频内容

第四:GPT4助力论文写作与投稿

1、利用ChatGPT4自动生成论文的总体框架

2、利用ChatGPT4完成论文翻译(指定翻译角色和翻译的领域、给一些背景提示)

3、利用ChatGPT4实现论文语法校正

4、利用ChatGPT4完成段落结构及句子逻辑润色

5、利用ChatGPT4完成论文评审意见的撰写与回复

第五:GPT4助力Python入门基础

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、第三方模块的安装与使用

5、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

6、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

第六:GPT4助力近红外光谱数据预处理

1、近红外光谱数据标准化与归一化(为什么需要标准化与归一化?)

2、近红外光谱数据异常值、缺失值处理

3、近红外光谱数据离散化及编码处理

4、近红外光谱数据一阶导数与二阶导数

5、近红外光谱数据去噪与基线校正

6、近红外光谱数据预处理中的ChatGPT提示词模板

第七:GPT4助力多元线性回归近红外光谱分析

1、多元线性回归模型(工作原理、最小二乘法)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

5、多元线性回归、岭回归、LASSO、Elastic Net的Python代码实现

6、多元线性回归中的ChatGPT提示词模板

7、案例演示:近红外光谱回归拟合建模

第八:GPT4助力BP神经网络近红外光谱分析

1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、训练集和测试集划分?BP神经网络常用激活函数有哪些?如何查看模型参数?

3、BP神经网络参数(隐含层神经元个数、学习率)的优化(交叉验证)

4、值得研究的若干问题(欠拟合与过拟合、评价指标的设计、样本不平衡问题等)

5、BP神经网络的Python代码实现

6、BP神经网络中的ChatGPT提示词模板

7、案例演示:1)近红外光谱回归拟合建模;2)近红外光谱分类识别建模

图片

第九:GPT4助力支持向量机(SVM)近红外光谱分析

1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题?SVM的启发:样本重要性排序及样本筛选)

3、SVM的Python代码实现

4、SVM中的ChatGPT提示词模板

5、案例演示:近红外光谱分类识别建模

第十:GPT4助力决策树、随机森林、Adaboost、XGBoost和LightGBM近红外光谱分析

1、决策树的基本原理(什么是信息熵和信息增益?ID3和C4.5算法的区别与联系)

2、随机森林的基本原理与集成学习框架(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?)

4、Bagging与Boosting集成策略的区别

5、Adaboost算法的基本原理

6、Gradient Boosting Decision Tree (GBDT)模型的基本原理

7、XGBoost与LightGBM

8、决策树、随机森林、Adaboost、XGBoost与LightGBM的Python代码实现

9、决策树、随机森林、Adaboost、XGBoost与LightGBM的ChatGPT提示词模板讲解

10、案例演示:近红外光谱回归拟合建模

第十一:GPT4助力遗传算法近红外光谱分析

1、群优化算法概述

2、遗传算法(Genetic Algorithm)的基本原理(什么是个体和种群?什么是适应度函数?选择、交叉与变异算子的原理与启发式策略)

3、遗传算法的Python代码实现

4、遗传算法中的ChatGPT提示词模板

5、案例演示:基于二进制遗传算法的近红外光谱波长筛选

第十二:GPT4助力近红外光谱变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?)

3、近红外光谱波长选择算法的基本原理(Filter和Wrapper;前向与后向选择法;区间法;无信息变量消除法等)

4、PCA、PLS、特征选择算法的Python代码实现

5、PCA、PLS、特征选择算法中的ChatGPT提示词模板

6、案例演示:1)基于L1正则化的近红外光谱波长筛选

2)基于信息熵的近红外光谱波长筛选

3)基于Recursive feature elimination的近红外光谱波长筛选

4)基于Forward-SFS的近红外光谱波长筛选

第十三:GPT4助力Pytorch入门基础

1、深度学习框架概述(PyTorch、Tensorflow、Keras等)

2、PyTorch(动态计算图与静态计算图机制、PyTorch的优点)

3、PyTorch的安装与环境配置(Pip vs. Conda包管理方式、验证是否安装成功)

4、张量(Tensor)的定义,以及与标量、向量、矩阵的区别与联系)

5、张量(Tensor)的常用属性与方法(dtype、device、requires_grad、cuda等)

6、张量(Tensor)的创建(直接创建、从numpy创建、依据概率分布创建)

7、张量(Tensor)的运算(加法、减法、矩阵乘法、哈达玛积(element wise)、除法、幂、开方、指数与对数、近似、裁剪)

8、张量(Tensor)的索引与切片

9、PyTorch的自动求导(Autograd)机制与计算图的理解

10、PyTorch常用工具包及API简介(torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader))

第十四:GPT4助力卷积神经网络近红外光谱分析

1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、卷积神经网络参数调试技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

4、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

5、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

6、卷积神经网络中的ChatGPT提示词模板

7、案例演示:(1)CNN预训练模型实现物体识别;(2)利用卷积神经网络抽取抽象特征;(3)自定义卷积神经网络拓扑结构;(4)基于卷积神经网络的近红外光谱模型建立

第十五:GPT4助力近红外光谱迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法)

3、基于卷积神经网络的迁移学习算法

4、迁移学习的Python代码实现

5、案例演示:基于迁移学习的近红外光谱的模型传递(模型移植)

第十六:GPT4助力自编码器近红外光谱分析

1、自编码器(Auto-Encoder的工作原理)

2、常见的自编码器类型简介(降噪自编码器、深度自编码器、掩码自编码器等)

3、自编码器的Python代码实现

4、自编码器中的ChatGPT提示词模板

5、案例演示:1)基于自编码器的近红外光谱数据预处理

2)基于自编码器的近红外光谱数据降维与有效特征提取

第十七:GPT4助力U-Net多光谱图像语义分割

1、语义分割(Semantic Segmentation)

2、U-Net模型的基本原理

3、语义分割、U-Net模型中的ChatGPT提示词模板讲解

4、案例演示:基于U-Net的多光谱图像语义分割

第十八:GPT4助力深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)等原理

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词模板

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/640743.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20240122在WIN10+GTX1080下使用字幕小工具V1.2的使用总结(whisper)

20240122在WIN10GTX1080下使用字幕小工具V1.2的使用总结 2024/1/22 19:52 结论:这个软件如果是习作,可以打101分,功能都实现了。 如果作为商业软件/共享软件,在易用性等方面,可能就只能有70分了。 【百分制】 可选的改…

2017年认证杯SPSSPRO杯数学建模A题(第二阶段)安全的后视镜全过程文档及程序

2017年认证杯SPSSPRO杯数学建模 A题 安全的后视镜 原题再现: 汽车后视镜的视野对行车安全非常重要。一般来说,汽车的后视镜需要有良好的视野范围,以便驾驶员能够全面地了解车后方的道路情况。同时,后视镜也要使图像的畸变尽可能…

Centos升级gcc版本

步骤1:查看当前服务器gcc版本 gcc –version 步骤2:查看当前gcc安装目录 find / -name gcc cd /usr/bin ll gcc* 因为gcc,g,c都是配套的,查找出 g和c的原版本位置 步骤3:安装下载依赖包 yum install glibc-heade…

yolov8 opencv dnn部署 github代码

源码地址 本人使用的opencv c github代码,代码作者非本人 实现推理源码中作者的yolov8s.onnx 推理条件 windows 10 Visual Studio 2019 Nvidia GeForce GTX 1070 opencv4.7.0 (opencv4.5.5在别的地方看到不支持yolov8的推理,所以只使用opencv4.7.0) c部署 环境…

竞赛保研 机器视觉目标检测 - opencv 深度学习

文章目录 0 前言2 目标检测概念3 目标分类、定位、检测示例4 传统目标检测5 两类目标检测算法5.1 相关研究5.1.1 选择性搜索5.1.2 OverFeat 5.2 基于区域提名的方法5.2.1 R-CNN5.2.2 SPP-net5.2.3 Fast R-CNN 5.3 端到端的方法YOLOSSD 6 人体检测结果7 最后 0 前言 &#x1f5…

Maven《四》-- 基于Idea进行Maven工程构建

目录 🐶4.1 构建概念和构建过程 🐶4.2 命令方式项目构建 1. 🥙编译:mvn compile 2. 🥙清理:mvn clean 3. 🥙打包:mvn package 4. 🥙安装:mvn install …

泰迪科技最新大数据法律监督模型解决方案

大数据法律监督平台是基于监督数据整合管理平台、监督模型构建平台、内置模型库以及法律监督线索管理平台打造的一套服务于检察机关法律监督工作的专业化系统。通过数据采集、融合、挖掘、建模、展现等一系列能力,辅助检察官从纷繁复杂的数据中,开展多维…

java遍历(for和forEach)

1.dade文件 package model;public class dade {private int id;private String name;public dade() {}public dade(int id, String name) {this.id id;this.name name;}public int getId() {return id;}public void setId(int id) {this.id id;}public String getName() {r…

Python中的函数(二)

1 闭包与装饰器 1.1 闭包 闭包(Closure)是指在一个函数内部定义的函数,并且该内部函数可以访问外部函数作用域中的变量。闭包可以在外部函数执行完毕后,仍然保持对外部函数作用域的引用,从而可以继续访问和操作外部函…

【Java】--网络编程:基于TCP协议的网络通信

【Java】–网络编程:基于TCP协议的网络通信 文章目录 【Java】--网络编程:基于TCP协议的网络通信一、TCP协议1.1 概念1.2 三次握手1.2.1 文字描述1.2.2 画图演示 1.3 四次挥手1.3.1 文字描述1.3.2 画图演示 二、基于TCP的Socket网络编程2.1 概念2.2 服务…

Kafka-服务端-网络层

Reactor模式 Kafka网络层采用的是Reactor模式,是一种基于事件驱动的模式。熟悉Java编程应该了解JavaNIO提供了实现Reactor模式的API。常见的单线程Java NIO的编程模式如图所示。 为了满足高并发的需求,也为了充分利用服务器的资源,服务端需要…

中间件存储设计 - 数组与链表

文章目录 数组ArrayListLinkedListHashMap小结 中间件主要包括如下三方面的基础:数据结构、JUC 和 Netty,接下来,我们先讲数据结构。 数据结构主要解决的是数据的存储方式问题,是程序设计的基座。 按照重要性和复杂程度&#xf…

Python fork方法:创建新进程

除可以进行多线程编程之外,Python 还支持使用多进程来实现并发编程。 Python 的 os 模块提供了一个 fork() 方法,该方法可以 fork 出来一个子进程。简单来说,fork() 方法的作用在于,程序会启动两个进程(一个是父进程&…

《WebKit 技术内幕》学习之十(1): 插件与JavaScript扩展

虽然目前的浏览器的功能很强 ,但仍然有其局限性。早期的浏览器能力十分有限,Web前端开发者希望能够通过一定的机制来扩展浏览器的能力。早期的方法就是插件机制,现在流行次啊用混合编程(Hybird Programming)模式。插件…

大模型实战营 Day5作业

基础作业: 使用 LMDeploy 以本地对话、网页Gradio、API服务中的一种方式部署 InternLM-Chat-7B 模型,生成 300 字的小故事(需截图) TurboMind 推理命令行本地对话 lmdeploy chat turbomind /share/temp/model_repos/internlm-cha…

RK3568平台 TinyAlsa集成第三方音频算法

一.tinyalsa介绍 ALSA(Advanced Linux Sound Architecture)是一个开源项目,涵盖了用户空间和内核空间对音频设备的操作接口,通过应用层使用alsalib可以实现对音频设备的控制 TinyAlsa是android推出的一个精简的ALSA库&#xff0c…

【教程】npm的时候ssh报错ssh://git@github.com/frozeman/bignumber.js-nolookahead.git

问题: fiscoubuntu:~/fisco/benchmarks$ npm install install web30.20.7 npm ERR! code 128 npm ERR! An unknown git error occurred npm ERR! command git --no-replace-objects ls-remote ssh://gitgithub.com/frozeman/bignumber.js-nolookahead.git npm ERR! …

Spring Cloud 系列:Seata 中TCC模式具体实现

概述 https://seata.io/zh-cn/docs/dev/mode/tcc-mode https://seata.io/zh-cn/docs/user/mode/tcc TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法: Try:资源的检测和…

第4章-IP基本原理

目录 1. IP协议概述 1.1. 定义 1.2. 功能 1.3. IP网络的结构 1.4. IP头格式 2. IP地址和地址映射 3. IP包转发 4. 其他相关协议介绍 1. IP协议概述 1.1. 定义 IP协议:IP协议是网际互连协议; 工作层次:网络层; 封装&#…

dubbo:服务暴露

节点角色说明: Provider:暴露服务的服务提供方。 Consumer::调用远程服务的服务消费方。 Registry:服务注册与发现的注册中心。 Monitor:统计服务的调用次调和调用时间的监控中心。 Container:服务运行容器。 调用关系说明: 0.服务容器负责启动&#xff…