快速傅立叶变换FFT学习笔记

什么是FFT?

FFT(Fast Fourier Transformation) 是离散傅氏变换(DFT)的快速算法,即快速傅氏变换。FFT使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。FFT可以将多项式乘法的复杂度从 O ( n 2 ) O(n^2) O(n2)降到 O ( n l o g n ) O(nlogn) O(nlogn)

下图是FFT的整体计算流程,FFT变换的复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),FFT域上的pointwise乘法的复杂度为 O ( n ) O(n) O(n),逆FFT变换的复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),总体复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

在这里插入图片描述

多项式的表示方法

方法1:系数表示

从多项式函数的定义,将所有系数视为系数向量,而由全部系数组成的向量 a a a叫做该多项式的系数表达:

f ( x ) = ∑ i = 0 n − 1 a i x i f(x)=\sum_{i=0}^{n-1}a_ix^i f(x)=i=0n1aixi

a = ( a 0 , a 2 , … , a n − 1 ) a=(a_0 ,a_2, \dots, a_{n-1}) a=(a0,a2,,an1)

举个简单的例子: f ( x ) = 5 x 0 + 6 x 1 + 7 x 2 f(x)=5x^0+6x^1+7x^2 f(x)=5x0+6x1+7x2的系数表示为 { 5 , 6 , 7 } \{5, 6, 7\} {5,6,7}。反之, { 5 , 6 , 7 } \{5, 6, 7\} {5,6,7}的系数编码结果为 f ( x ) = 5 x 0 + 6 x 1 + 7 x 2 f(x)=5x^0+6x^1+7x^2 f(x)=5x0+6x1+7x2

系数表示特点是对多项式加法友好,时间复杂度是 O ( n ) O(n) O(n)。但是对多项式乘法不友好,采用多项式逐项相乘,时间复杂度仍为 O ( n 2 ) O(n^2) O(n2)
注:系数表示的乘法表示卷积操作。

方法2:点值表示

任意选取 n n n个不同的自变量 x x x带入多项式函数 f ( x ) f(x) f(x)进行求值运算,将得到 n n n个不同的结果。于是,多项式的点值表达就是由这 n n n个数值点组成的集合:

{ ( x 0 , f ( x 0 ) ) , ( x 1 , f ( x 1 ) ) , … , ( x n − 1 , f ( x n − 1 ) ) } \{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_{n-1}, f(x_{n-1}))\} {(x0,f(x0)),(x1,f(x1)),,(xn1,f(xn1))}

举个简单的例子: f ( x ) = 5 x 0 + 6 x 1 + 7 x 2 f(x)=5x^0+6x^1+7x^2 f(x)=5x0+6x1+7x2的点值表示为 { ( 0 , f ( 0 ) ) , ( 1 , f ( 1 ) ) , ( 2 , f ( 2 ) ) } \{(0, f(0)), (1, f(1)), (2, f(2))\} {(0,f(0)),(1,f(1)),(2,f(2))}。反之, { 5 , 6 , 7 } \{5, 6, 7\} {5,6,7}的点值编码应该满足 f ( 0 ) = 5 , f ( 1 ) = 6 , f ( 2 ) = 7 f(0)=5, f(1)=6, f(2)=7 f(0)=5,f(1)=6,f(2)=7

点值表示的特点是对多项式乘法友好,时间复杂度是 O ( n ) O(n) O(n)【因为可以做element-wise乘法(EWMM)】,但是多项式加法不友好。

复数

复数的定义:设 a , b a, b a,b为实数,则 z = a + b i z = a + bi z=a+bi的数称为复数,其中 a a a称为实部, b b b称为虚部。
复数的模为: ∣ z ∣ = a 2 + b 2 |z|=\sqrt{a^2+b^2} z=a2+b2 。一个复数的共轭复数为: z ‾ = a − b i \overline{z}=a-bi z=abi,即改变虚部的符号。

单位复数根
对于任意一个复数 ω \omega ω,其 n n n次幂的结果为1,就称复数 ω \omega ω n n n次单位复数根,即
ω n = 1 \omega^n=1 ωn=1

可以看到, n n n次单位复数根有 n n n个,其几何意义为: n n n个单位复数根均匀地分布在以复平面原点为圆心的单位圆上。

在这里插入图片描述

在几何意义的单位圆中,我们将圆周角 2 π 2\pi 2π均分成 n n n份,则 2 π n \frac{2\pi}{n} n2π叫做单位根的幅角。
由欧拉公式:
e i 2 π n = c o s 2 π n + i s i n 2 π n e^{i\frac{2\pi}{n}} = cos \frac{2\pi}{n} + i sin \frac{2\pi}{n} ein2π=cosn2π+isinn2π

定义 ω n \omega_n ωn表示一个 n n n次单位根:
ω n = e i 2 π n \omega_n = e^{i\frac{2\pi}{n}} ωn=ein2π

ω n \omega_n ωn也是主 n n n次单位根,其余 w n 1 、 w n 2 w_{n}^{1}、w_{n}^{2} wn1wn2等叫做 n n n次单位根的幂次,记为:
ω n k = e i 2 k π n , k = 0 , 1 , … , n − 1 \omega_{n}^{k} = e^{i\frac{2k\pi}{n}}, k=0,1,\dots,n-1 ωnk=ein2,k=0,1,,n1

于是,很容易知道:
ω n 0 = ω n n = 1 , ω n n 2 = − 1 \omega_n^0=\omega_n^n=1, \omega_n^{\frac{n}{2}}=-1 ωn0=ωnn=1,ωn2n=1

单位复数根的性质1:消去引理
ω d n d k = e i 2 d k π d n = e i 2 k π n = w n k \omega_{dn}^{dk} = e^{i\frac{2dk\pi}{dn}}=e^{i\frac{2k\pi}{n}}=w_{n}^{k} ωdndk=eidn2d=ein2=wnk

单位复数根的性质1:折半引理
ω n k + n 2 = ω n k ω n n 2 = − ω n k \omega_{n}^{k+\frac{n}{2}} = \omega_{n}^{k}\omega_{n}^{\frac{n}{2}}=-\omega_{n}^{k} ωnk+2n=ωnkωn2n=ωnk
于是也可以得到:
( ω n k + n 2 ) 2 = ( − ω n k ) 2 = ( ω n k ) 2 = ω n 2 k = ω n 2 k (\omega_{n}^{k+\frac{n}{2}})^2=(-\omega_{n}^{k})^2=(\omega_{n}^{k})^2=\omega_{n}^{2k}=\omega_{\frac{n}{2}}^{k} (ωnk+2n)2=(ωnk)2=(ωnk)2=ωn2k=ω2nk
好处是将 n n n降到了原来的一半。

DFT:离散傅立叶变换

假设多项式:
A ( x ) = ∑ i = 0 n − 1 a i x i A(x)=\sum_{i=0}^{n-1}a_ix^i A(x)=i=0n1aixi

n n n次单位根的幂次 x = ω n k x=\omega_n^k x=ωnk分别代入多项式:
y k = A ( ω n k ) = ∑ i = 0 n − 1 a i ω n k i , k = 0 , 1 , … , n − 1 y_k = A(\omega_n^k)=\sum_{i=0}^{n-1}a_i\omega_n^{ki}, k=0,1,\dots,n-1 yk=A(ωnk)=i=0n1aiωnki,k=0,1,,n1

y = ( y 0 , y 1 , … , y n − 1 ) y=(y_0, y_1, \dots, y_{n-1}) y=(y0,y1,,yn1)是系数向量 a = ( a 0 , a 1 , … , a n − 1 ) a=(a_0, a_1,\dots,a_{n-1}) a=(a0,a1,,an1)的离散傅立叶变换,即DFT。

IDFT:离散傅立叶逆变换
a j = 1 n ∑ k = 0 n − 1 y k ω n − k i a_j = \frac{1}{n}\sum_{k=0}^{n-1}y_k\omega_n^{-ki} aj=n1k=0n1ykωnki

DFT对应多项式求值
IDFT对应插值,求多项式系数

值得注意的是,DFT的复杂度仍然是 O ( n 2 ) O(n^2) O(n2)

FFT和蝶形计算

FFT的原理是将多项式分解成奇偶两部分,并用分治的思想依次计算下去。
A ( x ) = a 0 + a 1 x 1 + ⋯ + a n − 1 x n − 1 A(x)=a_0+a_1x^1+\dots+a_{n-1}x^{n-1} A(x)=a0+a1x1++an1xn1

A 0 ( x ) = a 0 + a 2 x 1 + ⋯ + a n − 2 x n − 2 2 A_0(x)=a_0+a_2x^1+\dots+a_{n-2}x^{\frac{n-2}{2}} A0(x)=a0+a2x1++an2x2n2

A 1 ( x ) = a 1 + a 3 x 1 + ⋯ + a n − 1 x n − 2 2 A_1(x)=a_1+a_3x^1+\dots+a_{n-1}x^{\frac{n-2}{2}} A1(x)=a1+a3x1++an1x2n2

A ( x ) = A 0 ( x 2 ) + x A 1 ( x 2 ) A(x)=A_0(x^2)+xA_1(x^2) A(x)=A0(x2)+xA1(x2)

证明:
A ( x ) = A 0 ( x 2 ) + x A 1 ( x 2 ) = a 0 + a 2 x 2 + a 4 x 4 + ⋯ + a n − 2 x n − 2 + a 1 x 1 + a 3 x 3 + a 5 x 5 + ⋯ + a n − 1 x n − 1 A(x)=A_0(x^2)+xA_1(x^2)=a_0+a_2x^2+a_4x^4+\dots+a_{n-2}x^{n-2}+\\a_1x^1+a_3x^3+a_5x^5+\dots+a_{n-1}x^{n-1} A(x)=A0(x2)+xA1(x2)=a0+a2x2+a4x4++an2xn2+a1x1+a3x3+a5x5++an1xn1
得证!

x = ω n k x=\omega_n^k x=ωnk代入 A ( x ) = A 0 ( x 2 ) + x A 1 ( x 2 ) A(x)=A_0(x^2)+xA_1(x^2) A(x)=A0(x2)+xA1(x2)中,得到:
A ( ω n k ) = A 0 ( ω n 2 k ) + ω n k A 1 ( ω n 2 k ) = A 0 ( ω n 2 k ) + ω n k A 1 ( ω n 2 k ) A(\omega_n^k)=A_0(\omega_n^{2k})+\omega_n^kA_1(\omega_n^{2k})=A_0(\omega_{\frac{n}{2}}^{k})+\omega_n^kA_1(\omega_{\frac{n}{2}}^{k}) A(ωnk)=A0(ωn2k)+ωnkA1(ωn2k)=A0(ω2nk)+ωnkA1(ω2nk)

x = ω n k + n 2 x=\omega_n^{k+\frac{n}{2}} x=ωnk+2n代入 A ( x ) = A 0 ( x 2 ) + x A 1 ( x 2 ) A(x)=A_0(x^2)+xA_1(x^2) A(x)=A0(x2)+xA1(x2)中,得到:
A ( ω n k + n 2 ) = A 0 ( ω n 2 k + n ) + ω n k + n 2 A 1 ( ω n 2 k + n ) = A 0 ( ω n 2 k ) − ω n k A 1 ( w n 2 k ) = A 0 ( ω n 2 k ) − ω n k A 1 ( w n 2 k ) A(\omega_n^{k+\frac{n}{2}})=A_0(\omega_n^{2k+n}) + \omega_n^{k+\frac{n}{2}}A_1(\omega_n^{2k+n})=A_0(\omega_n^{2k})-\omega_n^kA_1(w_n^{2k})=A_0(\omega_{\frac{n}{2}}^{k})-\omega_n^kA_1(w_{\frac{n}{2}}^{k}) A(ωnk+2n)=A0(ωn2k+n)+ωnk+2nA1(ωn2k+n)=A0(ωn2k)ωnkA1(wn2k)=A0(ω2nk)ωnkA1(w2nk)

我们发现, A ( ω n k ) A(\omega_n^k) A(ωnk) A ( ω n k + n 2 ) A(\omega_n^{k+\frac{n}{2}}) A(ωnk+2n)的第一项完全相同,仅第二项为相反数。因此,如果知道 A 0 ( ω n 2 k ) A_0(\omega^k_{\frac{n}{2}}) A0(ω2nk) A 1 ( ω n 2 k ) A_1(\omega^k_{\frac{n}{2}}) A1(ω2nk)的值,我们就可以同时知道 A ( ω n k ) A(\omega^k_n) A(ωnk) A ( ω n k + n 2 ) A(\omega^{k+{n\over 2}}_n) A(ωnk+2n),所以可以用分治思想计算FFT,原问题的规模缩减了一半。

总结一下,FFT的计算如下:
A ( ω n k ) = A 0 ( ω n 2 k ) + ω n k A 1 ( ω n 2 k ) A(\omega_n^k)=A_0(\omega_{\frac{n}{2}}^{k})+\omega_n^kA_1(\omega_{\frac{n}{2}}^{k}) A(ωnk)=A0(ω2nk)+ωnkA1(ω2nk)

A ( ω n k + n 2 ) = A 0 ( ω n 2 k ) − ω n k A 1 ( w n 2 k ) A(\omega_n^{k+\frac{n}{2}})=A_0(\omega_{\frac{n}{2}}^{k})-\omega_n^kA_1(w_{\frac{n}{2}}^{k}) A(ωnk+2n)=A0(ω2nk)ωnkA1(w2nk)

可以通过这样的方式将一个多项式一直分解下去,如下图是对16点输入的分解:

在这里插入图片描述

在计算FFT时,需要成对的点做蝶形运算,这里成对的点就是0和8、4和12等,这个分组的过程可以用bit reverse实现。

8点FFT计算图示:

在这里插入图片描述

每一对数的蝶形运算:

在这里插入图片描述

Bit Reverse确定蝶形运算对

从下面这个8点FFT可以很清楚地看到,FFT蝶形运算时打乱了输入的顺序(倒位序),倒位序是由bit reverse操作得到的。

在这里插入图片描述

FFT的输入为倒位序,输出为自然顺序。

在这里插入图片描述

Bit reverse的原理其实并不复杂,从上文中16点输入的奇偶分解那个图就很容易看出来。

RFFT和FFT

RFFT中的R是实数的意思,RFFT是FFT的特殊版本,为实数输入设计。RFFT利用了实数的傅立叶变换为共轭对称这个事实,因此RFFT只需要计算一半的傅立叶变换系数。所以RFFT效率明显高于FFT,并且也只有一半的存储开销。

在这里插入图片描述

因此,当我们的输入为实数时(比如图像卷积任务),我们就可以利用实数的傅立叶变换为共轭对称这个特性,用RFFT替换FFT来提高计算效率。

实数的FFT为什么是共轭对称?

我们直接看DFT的计算公式(把上文中的索引i改成了t,方便和复数i区分开):
A ( ω n k ) = ∑ t = 0 n − 1 a t ω n k t A(\omega_n^k)=\sum_{t=0}^{n-1}a_t\omega_n^{kt} A(ωnk)=t=0n1atωnkt

其中,
ω n k = e i 2 k π n \omega_{n}^{k} = e^{i\frac{2k\pi}{n}} ωnk=ein2

于是,代入得到:
A ( ω n k ) = ∑ t = 0 n − 1 a t e i 2 k t π n ( 1 ) A(\omega_n^k)=\sum_{t=0}^{n-1}a_t e^{i\frac{2kt\pi}{n}}~~~~(1) A(ωnk)=t=0n1atein2ktπ    (1)

同时,我们可以计算出与上面点对称的点:
ω n n − k = e i 2 ( n − k ) π n \omega_n^{n-k}=e^{i\frac{2(n-k)\pi}{n}} ωnnk=ein2(nk)π

同样,代入得到:
A ( ω n n − k ) = ∑ t = 0 n − 1 a t ω n ( n − k ) t A(\omega_n^{n-k})=\sum_{t=0}^{n-1}a_t \omega_n^{(n-k)t} A(ωnnk)=t=0n1atωn(nk)t

其中,
ω n ( n − k ) t = ω n n t − k t = ω n n t / ω n k t = ω n − k t \omega_n^{(n-k)t}=\omega_n^{nt-kt}=\omega_n^{nt}/\omega_n^{kt}=\omega_n^{-kt} ωn(nk)t=ωnntkt=ωnnt/ωnkt=ωnkt

于是,
A ( ω n n − k ) = ∑ t = 0 n − 1 a t ω n − k t = ∑ t = 0 n − 1 a t e − i 2 k t π n ( 2 ) A(\omega_n^{n-k})=\sum_{t=0}^{n-1}a_t \omega_n^{-kt}=\sum_{t=0}^{n-1}a_t e^{-i\frac{2kt\pi}{n}}~~~~(2) A(ωnnk)=t=0n1atωnkt=t=0n1atein2ktπ    (2)

容易发现,式(1)和(2)只是在 e e e的指数上为相反数关系!
根据欧拉公式,对于(1):
e i 2 k t π n = c o s 2 k t π n + i s i n 2 k t π n e^{i\frac{2kt\pi}{n}}=cos\frac{2kt\pi}{n}+isin\frac{2kt\pi}{n} ein2ktπ=cosn2ktπ+isinn2ktπ

对于(2):
e − i 2 k t π n = c o s 2 k t π n − i s i n 2 k t π n e^{-i\frac{2kt\pi}{n}}=cos\frac{2kt\pi}{n}-isin\frac{2kt\pi}{n} ein2ktπ=cosn2ktπisinn2ktπ

证毕!

一大堆参考文献

  • 零知识证明 - 理解FFT的蝶形运算
  • 十分简明易懂的FFT(快速傅里叶变换)
  • 大数乘法—多项式与快速傅里叶变换
  • 快速傅立叶变换(Fast Fourier Transform)
  • fft海面模拟(二)
  • 彻底搞懂快速傅里叶变换FFT–旋转因子
  • 快速傅里叶变换(FFT)之一:Radix-2 DIT FFT
  • Rfft 和 FFT 有什么区别?
  • 离散傅里叶变换的衍生,负频率、fftshift、实信号、共轭对称

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/639776.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图像数据增广

目录 一、常用的图像增广方法 1、随机翻转 2、随机裁剪 3、随机颜色变换 二、图像代码实现 1、定义图像显示辅助函数 2、随机翻转 3、随机裁剪 4、随机颜色变换 5、结合多种图像增广方法 三、使用图像增广进行训练 1、下载数据集 2、读取图像并增广 3、多GPU训练 …

ctfshow-反序列化(web271-web276)

目录 web271 web272-273 web274 web275 web276 为什么不用分析具体为什么能成功 ,后面会有几个专题 会对php框架进行更深入的了解 这里面会专门的研究 为什么能够实现RCE 前面作为初步的熟悉 首先知道一下他的框架 知道框架的风格 知道啥版本可以用什么来打 首先先不用太研…

2024最新软件测试面试题合集

1、前端和后端有什么区别 前端能够从 App 屏幕和浏览器上看到的东西。例如,你所看到的内容、按钮、图片,它们都属于前端。 后端就是那些你在屏幕上看不到但又被用来为前端提供支持的东西。网站的后端涉及搭建服务器、保存和获取数据,以及用于…

自定义注解与拦截器实现不规范sql拦截(自定义注解填充插件篇)

在自定义注解与拦截器实现不规范sql拦截(拦截器实现篇)中提到过,写了一个idea插件来辅助对Mapper接口中的方法添加自定义注解,这边记录一下插件的实现。 需求简介 在上一篇中,定义了一个自定义注解对需要经过where判…

[足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05

本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记 - Kalman Filter卡尔曼滤波器 Ch05 1. Recursive Algirithm 递归算法2. Data Fusion 数据融合Covarince Matrix协方差矩阵State Space状态空间方程 Observation观测器3. Step by step : Deriatio…

【Java】面向对象之继承超级详解!!

文章目录 前言一、继承1.1 继承的概念1.1.1继承的语法 1.2 父类成员访问1.2.1 子类中访问父类的成员变量1.子类和父类中没有同名的成员变量2.子类和父类中有同名的成员变量 1.2.2子类中访问父类的成员方法成员方法名不同成员方法名字相同 1.3 super关键字1.4 子类构造方法1.5 继…

Python零基础教程5.1——Python官方自带Turtle.demo

官方装13最为致命 牛!Python自带画图demo引言DEMO有什么?总结 牛!Python自带画图demo 引言 我的电脑不是换新了嘛 所以 不得不重新下载Python 这一下 不得了 我下载了Python3.11.7这个版本 然后按照惯例 打开IDEL 平平无奇 但 我一不小心…

特斯拉开年再降价,2024年的汽车市场还会好吗?

“等等派”再度胜利!1月12日,特斯拉中国官宣Model 3和Model Y降价。其中,Model 3焕新版下降15500元,Model 3长续航焕新版下调11500元;特斯拉Model Y后轮驱动版售价下调7500元,特斯拉Model Y长续航版售价下调…

《GitHub Copilot 操作指南》课程介绍

第1节:GitHub Copilot 概述 一、什么是 GitHub Copilot 什么是 GitHub Copilot GitHub Copilot是GitHub与OpenAI合作开发的编程助手工具,利用机器学习模型生成代码建议。它集成在开发者的集成开发环境(IDE)中,可以根…

Excel象限图

Excel象限图 1、背景描述2、象限图(散点图)3、象限图(气泡图) 1、背景描述 平常我们在工作中做图表时,使用最多的就是柱状形、折线图、饼图,这些图表主要为了展示趋势、对比和构成,但有时候我们…

文本生成中的解码器方法

一.解码器的基本介绍 在文本生成任务中,解码器是生成序列的关键组件。解码器的目标是从先前生成的标记或隐藏状态中生成下一个标记。有几种方法用于设计文本生成中的解码器,以下是一些常见的解码器方法: Teacher Forcing(教师强…

自己动手造一个状态机

自己动手造一个状态机 引言有限自动状态机 (FSM)五要素应用场景优势 开源产品造个轮子改造点Looplab fsm示例演示实现解析 改造过程 引言 有限自动状态机 (Finite-state machine , FSM) 通常用来描述某个具有有限个状态的对象,并且在对象的生命周期中组成了一个状态…

flink基本概念

1. Flink关键组件: 这里首先要说明一下“客户端”。其实客户端并不是处理系统的一部分,它只负责作业的提交。具体来说,就是调用程序的 main 方法,将代码转换成“数据流图”(Dataflow Graph),并最终生成作业…

堆详解与优先级队列

导言: 我们知道队列是一种先进先出(FIFO)的数据结构,但是现实情况中,操作的数据有可能会有优先级,优先级高的数据要先出队。例如,医院的军人优先等等。而为此应运而生的就是优先级队列,java中可以使用Prio…

力扣hot100 相交链表 超全注释 满级表达

Problem: 160. 相交链表 文章目录 思路复杂度💖 Ac Code 思路 👨‍🏫 参考题解 👩‍🏫 参考图解 复杂度 时间复杂度: O ( n m ) O(nm) O(nm) 空间复杂度: 添加空间复杂度, 示例: O ( 1 ) O(1) O(…

详谈c++智能指针!!!

文章目录 前言一、智能指针的发展历史1.C 98/03 的尝试——std::auto_ptr2.std::unique_ptr3.std::shared_ptr4.std::weak_ptr5.智能指针的大小6.智能指针使用注意事项 二、智能指针的模拟实现三、C11和boost中智能指针的关系 前言 C/C 语言最为人所诟病的特性之一就是存在内存…

Docker是什么

docker本质 Docker 本质其实是 LXC 之类的增强版,它本身不是容器,而是容器的易用工具。容器是 linux 内核中的技术,Docker 只是把这种技术在使用上简易普及了。Docker 在早期的版本其核心就是 LXC 的二次封装发行版。 Docker 作为容器技术的…

开发第一个Flutter App需要注意什么

Flutter这些年发展的很快,特别是在 Google 持续的加持下,Flutter SDK 的版本号已经来到了 3开头,也正式开始对 Windows、macOS 和 Linux 桌面环境提供支持。如果从 Flutter 特有的优势来看,我个人认为主要是它已经几乎和原生的性能…

换手机后:旧手机备忘录怎么导入新手机里?

现在新手机层出不穷,大家都爱换手机来体验新功能,但在换手机的时候,数据传输是非常麻烦的一件事情。 每次换手机,就像是搬一次家。老房子里的点点滴滴,那些重要的、不重要的,都得一一打包,再在…