Golang 中如何实现 Set

在这里插入图片描述

在Go编程中,数据结构的选择对解决问题至关重要。本文将探讨如何在 GO 中实现 set 和 bitset 两种数据结构,以及它们在Go中的应用场景。

Go 的数据结构

Go 内置的数据结构并不多。工作中,我们最常用的两种数据结构分别是 slice 和 map,即切片和映射。 其实,Go 中也有数组,切片的底层就是数组,只不过因为切片的存在,我们平时很少使用它。

除了 Go 内置的数据结构,还有一些数据结构是由 Go 的官方 container 包提供,如 heap 堆、list 双向链表和ring 回环链表。但今天我们不讲它们,这些数据结构,对于熟手来说,看看文档就会使用了。

我们今天将来聊的是 set 和 bitset。据我所知,其他一些语言,比如 Java,是有这两种数据结构。但 Go 当前还没有以任何形式提供。

实现思路

先来看一篇文章,访问地址 2 basic set implementations 阅读。文中介绍了两种 go 实现 set 的思路, 分别是 map 和 bitset。

有兴趣可以读读这篇文章,我们接下来具体介绍下。

map

我们知道,map 的 key 肯定是唯一的,而这恰好与 set 的特性一致,天然保证 set 中成员的唯一性。而且通过 map 实现 set,在检查是否存在某个元素时可直接使用 _, ok := m[key] 的语法,效率高。

先来看一个简单的实现,如下:

set := make(map[string]bool) // New empty set
set["Foo"] = true            // Add
for k := range set {         // Loopfmt.Println(k)
}
delete(set, "Foo")    // Delete
size := len(set)      // Size
exists := set["Foo"]  // Membership

通过创建 map[string]bool 来存储 string 的集合,比较容易理解。但这里还有个问题,map 的 value 是布尔类型,这会导致 set 多占一定内存空间,而 set 不该有这个问题。

怎么解决这个问题?

设置 value 为空结构体,在 Go 中,空结构体不占任何内存。当然,如果不确定,也可以来证明下这个结论。

unsafe.Sizeof(struct{}{}) // 结果为 0

优化后的代码,如下:

type void struct{}
var member voidset := make(map[string]void) // New empty set
set["Foo"] = member          // Add
for k := range set {         // Loopfmt.Println(k)
}
delete(set, "Foo")      // Delete
size := len(set)        // Size
_, exists := set["Foo"] // Membership

之前在网上看到有人按这个思路做了封装,还写了一篇文章,可以去读一下。

其实,github 上已经有个成熟的包,名为 golang-set,它也是采用这个思路实现的。访问地址 golang-set,描述中说 Docker 用的也是它。包中提供了两种 set 实现,线程安全的 set 和非线程安全的 set。

演示一个简单的案例。

package mainimport ("fmt"mapset "github.com/deckarep/golang-set"
)func main() {// 默认创建的线程安全的,如果无需线程安全// 可以使用 NewThreadUnsafeSet 创建,使用方法都是一样的。s1 := mapset.NewSet(1, 2, 3, 4)fmt.Println("s1 contains 3: ", s1.Contains(3))fmt.Println("s1 contains 5: ", s1.Contains(5))// interface 参数,可以传递任意类型s1.Add("poloxue")fmt.Println("s1 contains poloxue: ", s1.Contains("poloxue"))s1.Remove(3)fmt.Println("s1 contains 3: ", s1.Contains(3))s2 := mapset.NewSet(1, 3, 4, 5)// 并集fmt.Println(s1.Union(s2))
}

输出如下:

s1 contains 3:  true
s1 contains 5:  false
s1 contains poloxue:  true
s1 contains 3:  false
Set{4, polxue, 1, 2, 3, 5}

例子中演示了简单的使用方式,如果有不明白的,看下源码,这些数据结构的操作方法名都是很常见的,比如交集 Intersect、差集 Difference 等,一看就懂。

bitset

继续聊聊 bitset,bitset 中每个数子用一个 bit 即能表示,对于一个 int8 的数字,我们可以用它表示 8 个数字,能帮助我们大大节省数据的存储空间。

bitset 最常见的应用有 bitmap 和 flag,即位图和标志位。这里,我们先尝试用它表示一些操作的标志位。比如某个场景,我们需要三个 flag 分别表示权限1、权限2和权限3,而且几个权限可以共存。我们可以分别用三个常量 F1、F2、F3 表示位 Mask。

示例代码如下(引用自文章 Bitmasks, bitsets and flags):

type Bits uint8const (F0 Bits = 1 << iotaF1F2
)func Set(b, flag Bits) Bits    { return b | flag }
func Clear(b, flag Bits) Bits  { return b &^ flag }
func Toggle(b, flag Bits) Bits { return b ^ flag }
func Has(b, flag Bits) bool    { return b&flag != 0 }func main() {var b Bitsb = Set(b, F0)b = Toggle(b, F2)for i, flag := range []Bits{F0, F1, F2} {fmt.Println(i, Has(b, flag))}
}

例子中,我们本来需要三个数才能表示这三个标志,但现在通过一个 uint8 就可以。bitset 的一些操作,如设置 Set、清除 Clear、切换 Toggle、检查 Has 通过位运算就可以实现,而且非常高效。

bitset 对集合操作有着天然的优势,直接通过位运算符便可实现。比如交集、并集、和差集,示例如下:

  • 交集:a & b
  • 并集:a | b
  • 差集:a & (~b)

底层的语言、库、框架常会使用这种方式设置标志位。

以上的例子中只展示了少量数据的处理方式,uint8 占 8 bit 空间,只能表示 8 个数字。那大数据场景能否可以使用这套思路呢?

我们可以把 bitset 和 Go 中的切片结合起来,重新定义 Bits 类型,如下:

type Bitset struct {data []int64
}

但如此也会产生一些问题,设置 bit,我们怎么知道它在哪里呢?仔细想想,这个位置信息包含两部分,即保存该 bit 的数在切片索引位置和该 bit 在数字中的哪位,分别将它们命名为 index 和 position。那怎么获取?

index 可以通过整除获取,比如我们想知道表示 65 的 bit 在切片的哪个 index,通过 65 / 64 即可获得,如果为了高效,也可以用位运算实现,即用移位替换除法,比如 65 >> 6,6 表示移位偏移,即 2^n = 64 的 n。

postion 是除法的余数,我们可以通过模运算获得,比如 65 % 64 = 1,同样为了效率,也有相应的位运算实现,比如 65 & 0b00111111,即 65 & 63。

一个简单例子,如下:

package mainimport ("fmt"
)const (shift = 6mask  = 0x3f // 即0b00111111
)type Bitset struct {data []int64
}func NewBitSet(n int) *Bitset {// 获取位置信息index := n >> shiftset := &Bitset{data: make([]int64, index+1),}// 根据 n 设置 bitsetset.data[index] |= 1 << uint(n&mask)return set
}func (set *Bitset) Contains(n int) bool {// 获取位置信息index := n >> shiftreturn set.data[index]&(1<<uint(n&mask)) != 0
}func main() {set := NewBitSet(65)fmt.Println("set contains 65", set.Contains(65))fmt.Println("set contains 64", set.Contains(64))
}

输出结果

set contains 65 true
set contains 64 false

以上的例子功能很简单,只是为了演示,只有创建 bitset 和 contains 两个功能,其他诸如添加、删除、不同 bitset 间的交、并、差还没有实现。有兴趣的朋友可以继续尝试。

其实,bitset 包也有人实现了,github地址 bit。可以读读它的源码,实现思路和上面介绍差不多。

下面是一个使用案例。

package mainimport ("fmt""github.com/yourbasic/bit"
)func main() {s := bit.New(2, 3, 4, 65, 128)fmt.Println("s contains 65", s.Contains(65))fmt.Println("s contains 15", s.Contains(15))s.Add(15)fmt.Println("s contains 15", s.Contains(15))fmt.Println("next 20 is ", s.Next(20))fmt.Println("prev 20 is ", s.Prev(20))s2 := bit.New(10, 22, 30)s3 := s.Or(s2)fmt.Println("next 20 is ", s3.Next(20))s3.Visit(func(n int) bool {fmt.Println(n)return false  // 返回 true 表示终止遍历})
}

执行结果:

s contains 65 true
s contains 15 false
s contains 15 true
next 20 is 65
prev 20 is 15
next 20 is 22
2
3
4
10
15
22
30
65
128

代码的意思很好理解,就是一些增删改查和集合的操作。要注意的是,bitset 和前面的 set 的区别,bitset 的成员只能是 int 整型,没有 set 灵活。平时的使用场景也比较少,主要用在对效率和存储空间要求较高的场景。

总结

本文介绍了Go 中两种 set 的实现原理,并在此基础介绍了对应于它们的两个包简单使用。我觉得,通过这篇文章,Go 中 set 的使用,基本都可以搞定了。

除这两个包,再补充两个,zoumo/goset 和 github.com/willf/bitset。

博文地址:Golang 中如何实现 Set

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/639711.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何本地安装Python Flask并结合内网穿透实现远程开发

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

flutter 实现定时滚动的公告栏的两种不错方式

相同的部分 自定义一个类继承StatefulWidget 所有公告信息存放在list里 第一种 scrollControllerAnimatedContainer 逻辑如下 我们可以发现启动了一个timer计时器计时5秒&#xff0c;hasClients检查其目标对象&#xff08;我们用的是listview&#xff09;是否被渲染&#x…

HarmonyOS鸿蒙应用开发(三、轻量级配置存储dataPreferences)

在应用开发中存储一些配置是很常见的需求。在android中有SharedPreferences&#xff0c;一个轻量级的存储类&#xff0c;用来保存应用的一些常用配置。在HarmonyOS鸿蒙应用开发中&#xff0c;实现类似功能的也叫首选项&#xff0c;dataPreferences。 相关概念 ohos.data.prefe…

【操作系统】实验一 Linux操作系统安装

&#x1f57a;作者&#xff1a; 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux &#x1f618;欢迎关注&#xff1a;&#x1f44d;点赞&#x1f64c;收藏✍️留言 &#x1f3c7;码字不易&#xff0c;你的&#x1f44d;点赞&#x1f64c;收藏❤️关注对我真的很重要&…

Simulink之Signal

Simulink.Signal 指定信号的属性 描述 此类使您能够创建工作区对象,用于分配或验证信号或离散状态的属性,如其数据类型、数字类型、维度等。您可以使用信号对象来: 将值指定给信号源未指定的信号属性(值为-1或auto)。 验证其值由信号源显式指定的信号属性。此类属性的…

2017年认证杯SPSSPRO杯数学建模B题(第二阶段)岁月的印记全过程文档及程序

2017年认证杯SPSSPRO杯数学建模 B题 岁月的印记 原题再现&#xff1a; 对同一个人来说&#xff0c;如果没有过改变面容的疾病、面部外伤或外科手术等经历&#xff0c;年轻和年老时的面容总有很大的相似性。人们在生活中也往往能够分辨出来两张不同年龄段的照片是不是同一个人…

FPGA物理引脚,原理(Pacakge and pinout)-认知3

画FPGA芯片引脚封装图&#xff08;原理&#xff09;&#xff0c;第一是参考开发板(根据一下描述了解总览&#xff09;&#xff0c;第二是研究Datasheet. ASCII Pinout File Zynq-7000 All Programmable SoC Packaging and Pinout(UG585) 1. Pacakge overview 1.1&#xff0…

智能生产系统的数字孪生应用场景

数字孪生引擎技术可以支持智能生产系统的设计、建设以及运营管理。和产品生命周期类似&#xff0c;生产制造系统也有其生命周期。图1中表述为:设计、构建、调试、运营与维护、报废与回收。智能生产系统的典型代表就是智能车间或智能工厂&#xff0c;其设计和建造是为了完成某一…

中仕教育:国考调剂和补录的区别是什么?

国考笔试成绩和进面名单公布之后&#xff0c;考生们就需要关注调剂和补录了&#xff0c;针对二者之间的区别很多考生不太了解&#xff0c;本文为大家解答一下关于国考调剂和补录的区别。 1.补录 补录是在公式环节之后进行的&#xff0c;主要原因是经过面试、体检和考察&#…

【C++】priority_queue模拟实现过程中值得注意的点

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 前言 本篇文章旨在记录博主在模…

【C++】命名空间(namespace)

文章目录 1. 为什么要有命名空间?2. 命名空间介绍3.命名空间三种使用方式4. 注意 1. 为什么要有命名空间? 在C语言中&#xff0c;局部变量和全局变量如果同名&#xff0c;在使用时可能会造成冲突。这并不是想避免就能避免的&#xff0c;在程序中&#xff0c;不仅仅是变量&…

[pytorch入门] 4. torchvision中数据集的使用

介绍 文档 可以去看官方文档 可以在里面找到一些数据集的使用 CIFAR10 import torchvision from torch.utils.tensorboard import SummaryWriterdataset_transform torchvision.transforms.Compose([torchvision.transforms.ToTensor(), ])train_set torchvision.datas…

测开和测试平台是否有存在的必要?

前言 在一线大厂&#xff0c;没有测试这个岗位&#xff0c;只有测开这个岗位&#xff0c;即使是做业务测试&#xff0c;那么你的title也是测开。 所以想聊一聊测开的看法&#xff0c;但不代表这是正确的看法&#xff0c;仅供参考。 没来阿里之前我对测开的看法 一直以为专职…

VMware ESXI系统安装

VMware ESXi是可直接安装在物理服务器上的强大的裸机管理系统&#xff0c;不需安装其他操作系统&#xff0c;是VMware服务器虚拟化的基础。通过直接访问并控制底层资源&#xff0c;VMware ESXi能有效地对硬件进行分区&#xff0c;以便整合应用并降低成本&#xff0c;是业界领先…

四.Winform使用Webview2加载本地HTML页面并互相通信

Winform使用Webview2加载本地HTML页面并互相通信 往期目录本节目标核心代码实现HTML代码实现的窗体Demo2代码效果图 往期目录 往期相关文章目录 专栏目录 本节目标 实现刷新按钮点击 C# winform按钮可以调用C# winform代码显示到html上点击HTML按钮可以调用C# winform代码更…

性能优化-OpenCL kernel 开发

「发表于知乎专栏《移动端算法优化》」 本文主要介绍OpenCL的 Kernel&#xff0c;包括代码的实例以及使用注意的详解。 &#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;高性能&#xff08;HPC&#xff09;开发基础教…

神策 CDP 获评中国软件评测中心「优秀大数据产品」

近日&#xff0c;中国软件评测中心在第十三届软件大会上揭晓了「第十五期优秀大数据产品、解决方案和案例测评结果」。神策数据基于客户旅程编排的客户数据平台&#xff08;CDP&#xff09;1.3.0 凭借出色的产品能力获评「优秀大数据产品」&#xff0c;并获得大数据基础设施类产…

SV学习——数据类型(1)

文章目录 1. 内建数据类型2. 用户自定义3. 枚举类型 1. 内建数据类型 SV中引入新的数据类型logic&#xff0c;SV作为侧重于验证的语言&#xff0c;并不十分关切logic对应的逻辑应该被综合位寄存器还是线网&#xff0c;因为logic被使用的场景如果是验证环境&#xff0c;那么它只…

【HarmonyOS】体验鸿蒙电商平台的未来之旅!

从今天开始&#xff0c;博主将开设一门新的专栏用来讲解市面上比较热门的技术 “鸿蒙开发”&#xff0c;对于刚接触这项技术的小伙伴在学习鸿蒙开发之前&#xff0c;有必要先了解一下鸿蒙&#xff0c;从你的角度来讲&#xff0c;你认为什么是鸿蒙呢&#xff1f;它出现的意义又是…

Linux 的提示符太长了,帮你精简一下

普通用户修改文件 ~/.bashrc 修改 50 行左右的代码&#xff0c;将两个w改为大写的W 如果是root用户则修改文件/root/.bashrc&#xff0c;同样的方法。