deque容器的存储结构
和 vector 容器采用连续的线性空间不同,deque 容器存储数据的空间是由一段一段等长的连续空间构成,各段空间之间并不一定是连续的,可以位于在内存的不同区域。
deque采用一块所谓的map数组(注意,不是STL的map容器)作为主控。这里所谓map是一小块连续空间(类似于vector),其中每个元素(此处称为一个节点,node)都是指针,指向另一段(较大的)连续线性空间,称为缓冲区。缓冲区才是deque的储存空间主体。SGI STL 允许我们指定缓冲区大小,默认值0表示将使用512 bytes 缓冲区。
通过建立 map 数组,deque 容器申请的这些分段的连续空间就能实现“整体连续”的效果。换句话说,当 deque 容器需要在头部或尾部增加存储空间时,它会申请一段新的连续空间,同时在 map 数组的开头或结尾添加指向该空间的指针,由此该空间就串接到了 deque 容器的头部或尾部。
如果 map 数组满了怎么办?很简单,再申请一块更大的连续空间供 map 数组使用,将原有数据(很多指针)拷贝到新的 map 数组中,然后释放旧的空间。
deque 容器的分段存储结构,提高了在序列两端添加或删除元素的效率,但也使该容器迭代器的底层实现变得更复杂。
deque容器迭代器的底层实现
由于 deque 容器底层将序列中的元素分别存储到了不同段的连续空间中,因此要想实现迭代器的功能,必须先解决如下 2 个问题:
- 迭代器在遍历 deque 容器时,必须能够确认各个连续空间在 map 数组中的位置;
- 迭代器在遍历某个具体的连续空间时,必须能够判断自己是否已经处于空间的边缘位置。如果是,则一旦前进或者后退,就需要跳跃到上一个或者下一个连续空间中。
为了实现遍历 deque 容器的功能,deque 迭代器定义了如下的结构:
template<class T,...>
struct __deque_iterator{...T* cur;T* first;T* last;map_pointer node;//map_pointer 等价于 T**
}
可以看到,迭代器内部包含 4 个指针,它们各自的作用为:
- cur:指向当前正在遍历的元素;
- first:指向当前连续空间的首地址;
- last:指向当前连续空间的末尾地址;
- node:它是一个二级指针,用于指向 map 数组中存储的指向当前连续空间的指针。
借助这 4 个指针,deque 迭代器对随机访问迭代器支持的各种运算符进行了重载,能够对 deque 分段连续空间中存储的元素进行遍历。例如:
//当迭代器处于当前连续空间边缘的位置时,如果继续遍历,就需要跳跃到其它的连续空间中,该函数可用来实现此功能
void set_node(map_pointer new_node){node = new_node;//记录新的连续空间在 map 数组中的位置first = *new_node; //更新 first 指针//更新 last 指针,difference_type(buffer_size())表示每段连续空间的长度last = first + difference_type(buffer_size());
}
//重载 * 运算符
reference operator*() const{return *cur;}
pointer operator->() const{return &(operator *());}
//重载前置 ++ 运算符
self & operator++(){++cur;//处理 cur 处于连续空间边缘的特殊情况if(cur == last){//调用该函数,将迭代器跳跃到下一个连续空间中set_node(node+1);//对 cur 重新赋值cur = first;}return *this;
}
//重置前置 -- 运算符
self& operator--(){//如果 cur 位于连续空间边缘,则先将迭代器跳跃到前一个连续空间中if(cur == first){set_node(node-1);cur == last;}--cur;return *this;
}
deque容器的底层实现
了解了 deque 容器底层存储序列的结构,以及 deque 容器迭代器的内部结构之后,接下来看看 deque 容器究竟是如何实现的。
deque 容器除了维护先前讲过的 map 数组,还需要维护 start、finish 这 2 个 deque 迭代器。以下为 deque 容器的定义:
//_Alloc为内存分配器
template<class _Ty,class _Alloc = allocator<_Ty>>
class deque{...
protected:iterator start;iterator finish;map_pointer map;
...
}
其中,start 迭代器记录着 map 数组中首个连续空间的信息,finish 迭代器记录着 map 数组中最后一个连续空间的信息。另外需要注意的是,和普通 deque 迭代器不同,start 迭代器中的 cur 指针指向的是连续空间中首个元素;而 finish 迭代器中的 cur 指针指向的是连续空间最后一个元素的下一个位置。
因此,deque 容器的底层实现如下图所示:
借助 start 和 finish,以及 deque 迭代器中重载的诸多运算符,就可以实现 deque 容器提供的大部分成员函数,比如:
//begin() 成员函数
iterator begin() {return start;}
//end() 成员函数
iterator end() { return finish;}
//front() 成员函数
reference front(){return *start;}
//back() 成员函数
reference back(){iterator tmp = finish;--tmp;return *tmp;
}
//size() 成员函数
size_type size() const{return finish - start;}//deque迭代器重载了 - 运算符
//enpty() 成员函数
bool empty() const{return finish == start;}
stack和queue的原理
由stack和queue源码可知,其实stack和queue是将deque容器进行再封装,其底层是一个deque容器。
对stack和queue操作,其实间接操作的是deque容器。