多线程——阻塞队列

什么是阻塞队列

相比于一般的队列,有两个特点
1.线程安全
2.带有阻塞功能
1)队伍为空时,出队列就会出现阻塞,阻塞到其他线程入队列为止
2)队伍为满时,入队列就会出现阻塞,阻塞到其他线程出队列为止

常用于生产者消费者模型
在这里插入图片描述
作用:
1.解耦合
2.削峰填谷

使用阻塞队列

public class Test12 {public static void main(String[] args) throws InterruptedException {BlockingQueue<String> queue = new ArrayBlockingQueue<>(100);queue.put("qqq");String elem = queue.take();System.out.println("elem = "+ elem);elem = queue.take();System.out.println("elem = " + elem);}
}

运行结果
在这里插入图片描述
不会结束运行,一直在等待。

使用put和offer一样的都是入队列,但是put是带有阻塞功能,offer没有带阻塞功能(队满了就会返回结果)
take方法用来出队列,也是带有阻塞功能

实现阻塞队列

1)实现普通队列

class MyBlockingQueue{private String[] elems = null;private int size = 0;private int head = 0;private int tail = 0;public MyBlockingQueue(int capacity){elems = new String[capacity];}public void put(String elem) throws InterruptedException {if (size > elems.length){//阻塞功能}elems[tail] = elem;tail++;if (tail >= elems.length){tail = 0;}size++;}public String take() throws InterruptedException {if (size == 0){//阻塞功能}String elem = null;elem = elems[head];head++;if (head >= elems.length){head = 0;}size--;return elem;}}}

2)加上线程安全

class MyBlockingQueue{private String[] elems = null;private int size = 0;private int head = 0;private int tail = 0;private Object locker = new Object();public MyBlockingQueue(int capacity){elems = new String[capacity];}public void put(String elem) throws InterruptedException {synchronized(locker){if (size > elems.length){}elems[tail] = elem;tail++;if (tail >= elems.length){tail = 0;}size++;}}public String take() throws InterruptedException {synchronized(locker){if (size == 0){}String elem = null;elem = elems[head];head++;if (head >= elems.length){head = 0;}size--;return elem;}}}

3)加上阻塞功能

class MyBlockingQueue{private String[] elems = null;private int size = 0;private int head = 0;private int tail = 0;private Object locker = new Object();public MyBlockingQueue(int capacity){elems = new String[capacity];}public void put(String elem) throws InterruptedException {synchronized(locker){while (size > elems.length){locker.wait();}elems[tail] = elem;tail++;if (tail >= elems.length){tail = 0;}size++;locker.notify();}}public String take() throws InterruptedException {synchronized(locker){while (size == 0){locker.wait();}String elem = null;elem = elems[head];head++;if (head >= elems.length){head = 0;}size--;locker.notify();return elem;}}}

代码解释:
最终代码将if改成了while,因为if只能判定一次,如果出现以下情况就会出bug(线程A,线程B都执行到了put中的wait,因为队列已满而停止运行,线程C出队列唤醒了线程A,线程A继续入队列,入队列后就会notify,导致唤醒了线程B,而此时队列已满,无法进行入队操作,就出现了bug),所以就使用while,wait之前判定一次,唤醒之后再进行一次判定,相当于多做一步确定操作

简单的生产者消费者模型

class MyBlockingQueue{private String[] elems = null;private int size = 0;private int head = 0;private int tail = 0;private Object locker = new Object();public MyBlockingQueue(int capacity){elems = new String[capacity];}public void put(String elem) throws InterruptedException {synchronized(locker){while (size > elems.length){locker.wait();}elems[tail] = elem;tail++;if (tail >= elems.length){tail = 0;}size++;locker.notify();}}public String take() throws InterruptedException {synchronized(locker){while (size == 0){locker.wait();}String elem = null;elem = elems[head];head++;if (head >= elems.length){head = 0;}size--;locker.notify();return elem;}}}
public class Test11 {public static void main(String[] args) throws InterruptedException {MyBlockingQueue myBlockingQueue = new MyBlockingQueue(100);Thread t1 = new Thread(()->{int n = 1;while(true){try {myBlockingQueue.put(n + "");System.out.println("生产元素 "+n);n++;} catch (InterruptedException e) {throw new RuntimeException(e);}}});Thread t2 = new Thread(()->{while(true){try {String n = myBlockingQueue.take();System.out.println("消费元素 " + n);Thread.sleep(500);} catch (InterruptedException e) {throw new RuntimeException(e);}}});t1.start();t2.start();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/623446.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

九州金榜|15岁初三男孩抑郁休学摆烂打游戏,高压教育要不得!

有一次和朋友一块聚餐&#xff0c;邻座是一位妈妈、和她大概七八岁的儿子&#xff0c;小男孩长得很帅气&#xff0c;没有像同龄人那样调皮捣乱&#xff0c;而是和妈妈很温馨的就餐。 看的出来一家人的素质很高&#xff0c;就餐过程中桌面保持的很整洁&#xff0c;交流声音也不…

你和家酿啤酒的距离,只差一台爱咕噜智能啤酒机

喝过工业啤酒&#xff0c;喝过精酿啤酒&#xff0c;但是你喝过在家自酿的啤酒吗&#xff1f; 啤酒是世界上消耗较多的饮料之一&#xff0c;而我国的啤酒年消耗量位居世界第一。近年来&#xff0c;随着越来越多的精酿啤酒涌入市场&#xff0c;精酿啤酒的概念与文化被更多消费者…

揭秘小米手机被疯狂吐槽的存储扩容技术

前段时间&#xff0c;在小米14的发布会上&#xff0c;雷布斯公布了名为“Xiaomi Ultra Space存储扩容”的技术&#xff0c;号称可以在512G的手机中再搞出来16G&#xff0c;256G的手机中再搞出8G。对于普通用户来说&#xff0c;能多得一些存储空间&#xff0c;无异是个很好的福利…

PID横向控制和仿真实现

文章目录 1. PID介绍2. PID横向控制原理3. 算法和仿真实现 1. PID介绍 PID是一种常见的控制算法&#xff0c;全称为Proportional-Integral-Derivative&#xff0c;即比例-积分-微分控制器。PID控制器是一种线性控制器&#xff0c;它将设定值与实际值进行比较&#xff0c;根据误…

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类

目录 往期精彩内容&#xff1a; 前言 模型整体结构 1 变分模态分解VMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 故障VMD分解可视化 2.3 故障数据的VMD分解预处理 3 基于VMD-CNN-BiGRU-Attenion的轴承故障诊断分类 3.1 定义VMD-CNN-BiGRU-Attenion分类网…

【C#】当重复使用一段代码倒计时时,使用静态类和静态方法,实现简单的this扩展方法

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是《C#》序列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌握。…

多特征变量序列预测(三)——CNN-Transformer风速预测模型

目录 往期精彩内容&#xff1a; 前言 1 多特征变量数据集制作与预处理 1.1 导入数据 1.2 数据集制作与预处理 2 基于Pytorch的CNN-Transformer 预测模型 2.1 定义CNN-Transformer预测模型 2.2 设置参数&#xff0c;训练模型 3 模型评估与可视化 3.1 结果可视化 3.2 …

高效构建Java应用:Maven入门和进阶(五)

高效构建Java应用&#xff1a;Maven入门和进阶&#xff08;五&#xff09; Maven实战案例&#xff1a;搭建微服务Maven工程框架5.1 项目需求和结构分析5.2项目搭建和统一构建 总结 Maven实战案例&#xff1a;搭建微服务Maven工程框架 5.1 项目需求和结构分析 需求案例&#xf…

SSH镜像、systemctl镜像、nginx镜像、tomcat镜像

目录 一、SSH镜像 二、systemctl镜像 三、nginx镜像 四、tomcat镜像 五、mysql镜像 一、SSH镜像 1、开启ip转发功能 vim /etc/sysctl.conf net.ipv4.ip_forward 1sysctl -psystemctl restart docker 2、 cd /opt/sshd/vim Dockerfile 3、生成镜像 4、启动容器并修改ro…

【编码魔法师系列_构建型4】原型模式(Prototype Pattern)

学会设计模式&#xff0c;你就可以像拥有魔法一样&#xff0c;在开发过程中解决一些复杂的问题。设计模式是由经验丰富的开发者们&#xff08;GoF&#xff09;凝聚出来的最佳实践&#xff0c;可以提高代码的可读性、可维护性和可重用性&#xff0c;从而让我们的开发效率更高。通…

10.抽象工厂模式

江湖上再也没人找林家的麻烦了。因为林平之一怒之下将辟邪剑谱公诸天下。一下子印出去几万份&#xff0c;江湖上人人都能轻而易举的得到这本无尚武学&#xff1b;然而江湖人士却陷入深深的矛盾之中&#xff1a; 不练&#xff0c;别人练了&#xff0c;分分钟秒杀你&#xff1b;练…

SV-7041T 30W网络有源音箱校园教室广播音箱,商场广播音箱,会议广播音箱,酒店广播音箱,工厂办公室广播音箱

SV-7041T 30W网络有源音箱 校园教室广播音箱&#xff0c;商场广播音箱&#xff0c;会议广播音箱&#xff0c;酒店广播音箱&#xff0c;工厂办公室广播音箱 SV-7041T是深圳锐科达电子有限公司的一款2.0声道壁挂式网络有源音箱&#xff0c;具有10/100M以太网接口&#xff0c;可将…

我为什么要写RocketMQ消息中间件实战派上下册这本书?

我与RocketMQ结识于2018年&#xff0c;那个时候RocketMQ还不是Apache的顶级项目&#xff0c;并且我还在自己的公司做过RocketMQ的技术分享&#xff0c;并且它的布道和推广&#xff0c;还是在之前的首席架构师的带领下去做的&#xff0c;并且之前有一个技术神经质的人&#xff0…

爬虫入门学习(二)——response对象

大家好&#xff01;我是码银&#xff0c;代码的码&#xff0c;银子的银&#x1f970; 欢迎关注&#x1f970;&#xff1a; CSDN&#xff1a;码银 公众号&#xff1a;码银学编程 前言 在本篇文章&#xff0c;我们继续讨论request模块。从上一节&#xff08;爬虫学习(1)--reque…

【C++】异常机制

异常 一、传统的处理错误的方式二、C异常概念三、异常的使用1. 异常的抛出和捕获&#xff08;1&#xff09;异常的抛出和匹配原则&#xff08;2&#xff09;在函数调用链中异常栈展开匹配原则 2. 异常的重新抛出3. 异常安全4. 异常规范 四、自定义异常体系五、C 标准库的异常体…

leetcode第365题:水壶问题

有两个水壶&#xff0c;容量分别为 jug1Capacity 和 jug2Capacity 升。水的供应是无限的。确定是否有可能使用这两个壶准确得到 targetCapacity 升。 如果可以得到 targetCapacity 升水&#xff0c;最后请用以上水壶中的一或两个来盛放取得的 targetCapacity 升水。 你可以&a…

【VTKExamples::PolyData】第一期 凸包计算

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 前言 本文分享VTKExamples中的凸包计算样例,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ~YO ​​​​​​​ 目录 前言 1. 凸包…

GZ075 云计算应用赛题第7套

2023年全国职业院校技能大赛&#xff08;高职组&#xff09; “云计算应用”赛项赛卷7 某企业根据自身业务需求&#xff0c;实施数字化转型&#xff0c;规划和建设数字化平台&#xff0c;平台聚焦“DevOps开发运维一体化”和“数据驱动产品开发”&#xff0c;拟采用开源OpenSt…

geemap学习笔记047:边缘检测

前言 边缘检测适用于众多的图像处理任务&#xff0c;除了上一节[[geemap046&#xff1a;线性卷积–低通滤波器和拉普拉斯算子|线性卷积]]中描述的边缘检测核之外&#xff0c;Earth Engine 中还有几种专门的边缘检测算法。其中Canny 边缘检测算法使用四个独立的滤波器来识别对角…

嵌入式学习-网络编程-Day1

Day1 思维导图 作业 实现一下套接字通信 代码 #include<myhead.h>int main(int argc, const char *argv[]) {//1、创建套接字int sfd socket(AF_INET, SOCK_STREAM, 0);//参数1&#xff1a;通信域&#xff1a;使用的是ipv4通信//参数2&#xff1a;表示使用tcp通信//参…