SpringCloud(十)——ElasticSearch简单了解(二)DSL查询语句及RestClient查询文档

文章目录

  • 1. DSL查询文档
    • 1.1 DSL查询分类
    • 1.2 全文检索查询
    • 1.3 精确查询
    • 1.4 地理查询
    • 1.5 查询算分
    • 1.6 布尔查询
    • 1.7 结果排序
    • 1.8 分页查询
    • 1.9 高亮显示
  • 2. RestClient查询文档
    • 2.1 查询全部
    • 2.2 其他查询语句
    • 2.3 排序和分页
    • 2.4 高亮显示

1. DSL查询文档

1.1 DSL查询分类

  • 查询所有:查询出所有数据,一般测试用。例如:match_all
  • 全文检索查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
    • ids
    • range
    • term
  • 地理查询:根据经纬度查询。例如:
    • geo_distance
    • geo_bounding_box
  • 复合查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
    • bool
    • function_score

下面我们以一个基本的查询语句来举例,比如,我们需要查询索引库 hotel 全部内容,使用的DSL语句如下:

GET /hotel/_search
{"query": {"match_all": {}}
}

1.2 全文检索查询

全文检索常用的有两个查询函数,分别是 match 以及 multi_match

  • match 函数会对用户输入内容分词,然后去倒排索引库检索,语法如下:
    GET /indexName/_search
    {"query": {"match": {"FIELD": "TEXT"}}
    }
    
    比如搜索 hotel 索引库中的 name 字段,如下:
    GET /hotel/_search
    {"query": {"match": {"name": "酒店"}}
    }
    
  • multi_match 函数与 match 类似,不过允许查询多个字段,语法如下:
    GET /indexName/_search
    {"query": {"multi_match": {"query": "TEXT","fields": ["FIELD1", " FIELD2"]}}
    }
    
    比如搜索 hotel 索引库中的 name 字段,如下:
    GET /hotel/_search
    {"query": {"multi_match": {"query": "如家","fields": ["name", " brand"]}}
    }
    

1.3 精确查询

精确查询的语句函数主要有 term 语句和 range 语句,精确查询必须要查询的内容与字段里面的所有内容完全匹配才行,一般的查询是keyword、数值、日期、boolean等类型字段。

  • term 的语法如下:
    GET /indexName/_search
    {"query": {"term": {"FIELD": {"value": "VALUE"}}}
    }
    
  • range 查询的语法如下:
    GET /indexName/_search
    {"query": {"range": {"FIELD": {"gte": 10,"lte": 20}}}
    }
    
    其中 gt 是大于,lt 是小于,gte 是大于等于,lte 是小于等于。

1.4 地理查询

地理查询主要是根据经纬度来进行查询的,主要使用的函数有 geo_bounding_boxgeo_distance

  • geo_bounding_box 函数的语法如下:
    GET /indexName/_search
    {"query": {"geo_bounding_box": {"FIELD": {"top_left": {"lat": 31.1,"lon": 121.5},"bottom_right": {"lat": 30.9,"lon": 121.7}}}}
    }
    
    该函数能够将在一个矩阵框中的经纬度全部筛选出来,该矩阵的左上角的点以及右下角的点如上述定义所示,根据这两个点已经就能够定义一个矩形了,。
  • geo_distance 函数的语法如下:
    GET /indexName/_search
    {"query": {"geo_distance": {"distance": "15km","FIELD": "31.21,121.5"}}
    }
    
    该函数是筛选距离定义经纬度点指定距离内的所有点,这个距离指的是距定义点方圆的距离。

1.5 查询算分

在使用关键词等进行查询的时候,会有一个 _score 属性,这就是每条数据与查询关键词的相关性分数,该分数在ElasticSearch5.0之前是使用的 TF-IDF 算法进行的评分,ElasticSearch5.0之后是使用的 BM25 算法进行评分。
在这里插入图片描述
我们可以使用 function score query,修改文档的相关性算分(query score),根据新得到的算分排序。修改算分的示例语句如下:

GET /hotel/_search
{"query": {"function_score": {"query": { "match": {"all": "外滩"} },"functions": [{"filter": {"term": {"id": "1"}},"weight": 10}],"boost_mode": "multiply"}}
}

在上面的例句中,

  • query 是正常的查询语句
  • filter 表示过滤条件,符合条件的文档才会被重新算分
  • weight 是指算分函数,算分函数的结果称为 function score ,将来会与原始的 query score 运算,得到新算分,常见的算分函数有:
    • weight:给一个常量值,作为函数结果(function score)
    • field_value_factor:用文档中的某个字段值作为函数结果
    • random_score:随机生成一个值,作为函数结果
    • script_score:自定义计算公式,公式结果作为函数结果
  • boost_mode 定义function score与query score的运算方式,常见的加权方式如下:
    • multiply:两者相乘。默认就是这个
    • replace:用function score 替换 query score
    • 其它:sum、avg、max、min

1.6 布尔查询

布尔查询时一个或多个查询的字句,子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

示例如下:

GET /hotel/_search
{"query": {"bool": {"must": [{"term": {"city": "上海" }}],"should": [{"term": {"brand": "皇冠假日" }},{"term": {"brand": "华美达" }}],"must_not": [{ "range": { "price": { "lte": 500 } }}],"filter": [{ "range": {"score": { "gte": 45 } }}]}}
}

1.7 结果排序

elasticsearch支持对搜索结果排序,默认是根据相关度算分(_score)来排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"FIELD": "desc"  // 排序字段和排序方式ASC、DESC}]
}

以上就是指定字段的排序, ASC 代表升序,DASC 代表降序,如果有多个排序字段,那么按照从上到下的优先级进行排序。

举个例子,如果我们想要按照某一个经纬度的距离进行排序,那么模板如下:

GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"_geo_distance" : {"FIELD" : "纬度,经度","order" : "asc","unit" : "km"}}]
}

1.8 分页查询

ElasticSearch查询时默认只显示10条数据,那如果我们想要看到其他的数据怎么办呢?这就涉及到了分页。ElasticSearch分页的方式有很多种,这里讲一下使用 from, size 参数以及 search after 来进行分页。

  • 使用 from, size 两个参数进行分页。可以在搜索时规定这两个参数的值, from 表示从何处开始进行查看,默认是 0 0 0size 表示每次查询的信息有多少条。比如每也10条数据,我们想要查看第二页的数据,那么就需要设置 from: 10,size:10 ,格式如下:

    GET /hotel/_search
    {"query": {"match_all": {}},"from": 990, // 分页开始的位置,默认为0"size": 10, // 期望获取的文档总数"sort": [{"price": "asc"}]
    }
    

    但是,这种方式要求 from+size 不大于 10000 10000 10000 ,且该方式是先查询所有的数据,然后再对数据进行截取,不可避免的,该方式会面临深度分页问题,即我们的ElasticSearch肯定是要有集群的,当我们需要取出前 1000 1000 1000 个结果时,需要整理每个集群中的结果,再重新排序,再选出前 1000 1000 1000 个,但是,如果结果集很大,这对内存以及CPU的消耗就很大。

  • 使用 search after 进行分页。针对深度分页,ElasticSearch提供了 search after 方法,该方法没有查询上限,只限制了单次的 size 不超过 10000 10000 10000search after 方法分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。

    例如,我们查询到了第一页的数据,最后一条数据如下:
    在这里插入图片描述
    我们将最后一条数据的 sort 字段复制到 search_after 中,再规定一个 size 属性,就能够在该条数据之后再显示 size 条数据,语法模板如下:

    GET /hotel/_search
    {"query": {"match_all": {}},"search_after": [161],"size": 10,"sort": [{"price": "asc"}]
    }
    

1.9 高亮显示

在使用搜索引擎进行搜索时,我们发现我们输入的关键词显示都是用了高亮进行显示,这就是搜索结果的高亮。其实,这种高亮的显示是在搜索结果中将关键字用标签进行标注出来,再到页面中进行CSS的渲染。默认在进行高亮查询时会在高亮字段前后添加 em 标签,如果想添加其他标签可以进行更改,语法模板如下:

GET /hotel/_search
{"query": {"match": {"FIELD": "TEXT"}},"highlight": {"fields": { // 指定要高亮的字段,可以添加多个字段"FIELD": {"pre_tags": "<em>",  // 用来标记高亮字段的前置标签,默认就是em标签,所以可以不写"post_tags": "</em>" // 用来标记高亮字段的后置标签}}}
}

这里我们对酒店数据进行查询的例子如下:

GET /hotel/_search
{"query": {"match": {"all": "如家"}},"highlight": {"fields": { "name": {"require_field_match": "false"}}}
}

在上面的搜索中, all 字段是 name, brand 等字段 copy_to 后的属性,而下面高亮显示的属性是 name 属性,这就导致了查询的属性与高亮显示的属性不一致的情况,这种情况默认是不会进行高亮显示的,需要查询的属性与高亮显示的属性一致才进行高亮显示。但是我们就可以设置 require_field_match 属性为 false 控制高亮显示与查询字段和高亮显示的字段无关。

高亮结果显示如下:
在这里插入图片描述

2. RestClient查询文档

2.1 查询全部

查询全部的代码如下所示,

    @Testvoid testMatchAll() throws IOException {//1.准备Request对象SearchRequest request = new SearchRequest("hotel");//2.准备DSLrequest.source().query(QueryBuilders.matchAllQuery());//3.发送请求SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);//4.解析响应SearchHits searchHits = response.getHits();//5.1 获取总条数long total = searchHits.getTotalHits().value;System.out.println("共有" + total + "条数据");//5.2 文档数组存储文档SearchHit[] hits = searchHits.getHits();for(SearchHit hit: hits){//6.获取文档sourceString json = hit.getSourceAsString();//7.反序列化HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);System.out.println(hotelDoc);}System.out.println(response);}

其中每一段代码与DSL语句的对应关系如下:
在这里插入图片描述

2.2 其他查询语句

其实其他查询语句与上述查询全部的语句中大部分代码是类似的,唯一变化的是 request.source().query()query 的参数。

  • match
    // 分别是字段名和查询的语句
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    
  • multi_match
    // 分别是查询词以及查询字段
    request.source().query(QueryBuilders.matchQuery("如家", "name", "brand"));
    
  • term
    // 分别是查询字段以及查询词
    request.source().query(QueryBuilders.termQuery("city", "成都"));
    
  • range
    // 分别是查询词以及查询条件
    request.source().query(QueryBuilders.rangeQuery("price").gte(100).lte(300));
    
  • 布尔查询
    // 构建布尔查询
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // must语句
    boolQuery.must(QueryBuilders.termQuery("city", "成都"));
    //filter语句
    boolQuery.filter(QueryBuilders.rangeQuery("price").gte(100).lte(300))
    request.source().query(boolQuery);
    

2.3 排序和分页

排序与分页的代码也仅需要在 request.source().query() 上进行修改即可,修改示例如下:

request.source().query(QueryBuilders.termQuery("city", "成都"));
// 排序
request.source().sort("price", SortOrder.ASC);
//分页
request.source().from(0).size(10);

2.4 高亮显示

高亮显示仅需要在查询的内容后面添加一行代码即可,如下:

// 设置高亮显示并关闭查询字段与高亮字段一致
request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));

但是,设置了高亮后输出发现并不是高亮的内容,需要高亮的内容前后没有标签,这是怎么回事呢?

回顾上面可以发现,高亮的内容与 _source 内容是分开的,是重新的一个字段,于是,我们需要用高亮的字段覆盖原来的字段,那么循环里面的代码如下:

for(SearchHit hit: hits){//6.获取文档sourceString json = hit.getSourceAsString();//7.反序列化HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);//获取高亮结果Map<String, HighlightField> highlightFieldMap = hit.getHighlightFields();//简洁判断,判断highlightFieldMap是否为空或者size==0if(!CollectionUtils.isEmpty(highlightFieldMap)){//获取highlight属性中的name属性HighlightField highlightField = highlightFieldMap.get("name");if(highlightField != null){//得到name属性的第一个值的字符串String name = highlightField.getFragments()[0].string();//覆盖原本的值hotelDoc.setName(name);}}System.out.println(hotelDoc);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/61789.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式锁实现一. 利用Mysql数据库update锁

文章目录 分布式锁1、什么是分布式锁&#xff1a;2、分布式锁应该具备哪些条件&#xff1a; 基于数据库的分布式锁代码传送代码运行 分布式锁 1、什么是分布式锁&#xff1a; 分布式锁&#xff0c;即分布式系统中的锁。在单体应用中我们通过锁解决的是控制共享资源访问的问题…

app易用性测试报告 软件app测试

易用性测试 app易用性测试应遵从GB/T25000.10-2016、GB/T25000.51-2016中的有关成熟性、可用性、容错性、易恢复性等方面的可靠性要求。依据应用场景需要&#xff0c;可让用户较长时间连续运行或使用APP&#xff0c;不应出现崩溃、闪退、卡死、无响应、响应迟缓等问题。 根据…

11、监测数据采集物联网应用开发步骤(8.2)

监测数据采集物联网应用开发步骤(8.1) 新建TCP/IP Client线程类com.zxy.tcp.ClientThread.py #! python3 # -*- coding: utf-8 -Created on 2017年05月10日 author: zxyong 13738196011 import datetime import socket import threading import timefrom com.zxy.adminlog.Us…

深度学习-4-二维目标检测-YOLOv3模型

单阶段目标检测模型YOLOv3 R-CNN系列算法需要先产生候选区域&#xff0c;再对候选区域做分类和位置坐标的预测&#xff0c;这类算法被称为两阶段目标检测算法。近几年&#xff0c;很多研究人员相继提出一系列单阶段的检测算法&#xff0c;只需要一个网络即可同时产生候选区域并…

Linux:编译遇到 Please port gnulib freadahead.c to your platform ,怎么破

问题背景 编译m4时遇到以下错误&#xff0c;该怎么解决呢&#xff1f; 解决方法 进入m4的build目录&#xff1a;build/host-m4-1.4.17 输入命令&#xff1a; sed -i s/IO_ftrylockfile/IO_EOF_SEEN/ lib/*.c echo "#define _IO_IN_BACKUP 0x100" >> lib/std…

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像...

原文链接&#xff1a;http://tecdat.cn/?p24346 在今天产品高度同质化的品牌营销阶段&#xff0c;企业与企业之间的竞争集中地体现在对客户的争夺上&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 “用户就是上帝”促使众多的企业不惜代价去争夺尽可能多的客…

vue去掉循环数组中的最后一组的某个样式style/class

vue去掉循环数组中的最后一组的某个样式style/class 需求&#xff1a;要实现这样的排列 现状 发现&#xff0c;最后一个格子并没有跟下面绿色线对齐。 最后发现 是因为 每个格子都给了 margin-right&#xff1a;36px&#xff0c;影响到了最后一个格子 所以要 将最后一个格子的…

Linux:Jupyterhub多用户远程登录安装、使用经验

1、安装 首先&#xff0c;打开官网帮助文档&#xff1a; JupyterHub 官方安装帮助文档 一般安装都是参考官方最新版安装文档。 1.1环境条件 本次安装 JupyterHub的软件环境&#xff1a; 基于 Linux Centos系统&#xff1b;Python 3.9或更高版本&#xff1b;安装 nodejs/n…

高效利用隧道代理实现无阻塞数据采集

在当今信息时代&#xff0c;大量的有价值数据分散于各个网站和平台。然而&#xff0c;许多网站对爬虫程序进行限制或封禁&#xff0c;使得传统方式下的数据采集变得困难重重。本文将向您介绍如何通过使用隧道代理来解决这一问题&#xff0c;并帮助您成为一名高效、顺畅的数据采…

工厂人员作业行为动作识别检测算法

工厂人员作业行为动作识别检测算法通过yolov7python深度学习算法框架模型&#xff0c;工厂人员作业行为动作识别检测算法实时识别并分析现场人员操作动作行为是否符合SOP安全规范流程作业标准&#xff0c;如果不符合则立即抓拍告警提醒。Python是一种由Guido van Rossum开发的通…

BMC相关知识

简介 BMC&#xff08;Baseboard Management Controller&#xff09;&#xff0c;基板管理控制器&#xff0c;普通PC没有&#xff0c;服务器产品必备。BMC是一个独立的系统&#xff0c;只要通电即可运行&#xff0c;服务器无需开机&#xff0c;不依赖其它软硬件&#xff0c;如O…

webrtc 的Bundle group 和RTCP-MUX

1&#xff0c;最近调试程序的时候发现抱一个错误 max-bundle configured but session description has no BUNDLE group 最后发现是一个参数设置错误 config.bundle_policy webrtc::PeerConnectionInterface::BundlePolicy::kBundlePolicyMaxBundle; 2&#xff0c;rtcp-mu…

Linux之Shell(一)

Linux之Shell Shell概述Linux提供的Shell解析器bash和sh的关系Centos默认的解析器是bash Shell脚本入门脚本格式第一个脚本脚本常用的执行方式 变量系统预定义变量自定义变量特殊变量$n$#\$*、\$$? 运算符条件判断流程控制(▲)if判断case语句for循环while循环 read读取控制台输…

并发容器11

一 JDK 提供的并发容器总结 JDK 提供的这些容器大部分在 java.util.concurrent 包中。 ConcurrentHashMap: 线程安全的 HashMap CopyOnWriteArrayList: 线程安全的 List&#xff0c;在读多写少的场合性能非常好&#xff0c;远远好于 Vector. ConcurrentLinkedQueue: 高效的并…

设计模式入门笔记

1 设计模式简介 在IT这个行业&#xff0c;技术日新月异&#xff0c;可能你今年刚弄懂一个编程框架&#xff0c;明年它就不流行了。 然而即使在易变的IT世界也有很多几乎不变的知识&#xff0c;他们晦涩而重要&#xff0c;默默的将程序员划分为卓越与平庸两类。比如说&#xff…

unity 之参数类型之引用类型

文章目录 引用类型引用类型与值类型的差异 引用类型 在Unity中&#xff0c;引用类型是指那些在内存中存储对象引用的数据类型。以下是在Unity中常见的引用类型的介绍&#xff1a; 节点&#xff08;GameObject&#xff09;&#xff1a; 在Unity中&#xff0c;游戏对象&#xff…

无重叠区间【贪心算法】

无重叠区间 给定一个区间的集合 intervals &#xff0c;其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量&#xff0c;使剩余区间互不重叠 。 class Solution {public int eraseOverlapIntervals(int[][] intervals) {//先排序&#xff0c;按照左边界升序,注…

【爬虫】实验项目一:文本反爬网站的分析和爬取

目录 一、实验目的 二、实验预习提示 ​编辑 三、实验内容 四、实验要求 五、实验过程 1. 基本要求&#xff1a; 2. 改进要求A 3. 改进要求B: 六、资料 1.实验框架代码&#xff1a; 2.OpenSSL&#xff1a;Win32/Win64 OpenSSL Installer for Windows - Shining Light…

Node与Express后端架构:高性能的Web应用服务

在现代Web应用开发中&#xff0c;后端架构的性能和可扩展性至关重要。Node.js作为一个基于事件驱动、非阻塞I/O的平台&#xff0c;以及Express作为一个流行的Node.js框架&#xff0c;共同构建了高性能的Web应用服务。 在本文中&#xff0c;我们将深入探讨Node与Express后端架构…

污水厂数字孪生 | 3D可视化管理系统助力污水企业数字化管理

随着城市化进程的不断加快&#xff0c;污水处理成为了城市环境保护的重要组成部分。传统的污水处理方式往往存在诸多问题&#xff0c;如信息不对称、安全隐患等。为了解决这些问题&#xff0c;污水处理3D可视化管控平台应运而生&#xff0c;它通过结合数字孪生技术和远程指导技…