考生作弊行为分析算法

考生作弊行为分析系统利用python+yolo系列网络模型算法框架,考生作弊行为分析算法利用图像处理和智能算法对考生的行为进行分析和识别,经过算法服务器的复杂计算和逻辑判断,算法将根据考生行为的特征和规律,判定是否存在作弊行为。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。

Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO的结构非常简单,就是单纯的卷积、池化最后加了两层全连接,从网络结构上看,与前面介绍的CNN分类网络没有本质的区别,最大的差异是输出层用线性函数做激活函数,因为需要预测bounding box的位置(数值型),而不仅仅是对象的概率。所以粗略来说,YOLO的整个结构就是输入图片经过神经网络的变换得到一个输出的张量。

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/61716.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git基础教程-常用命令整理:学会Git使用方法和错误解决

目录 一、了解Git的基本概念 二、Git的安装和配置 Git的安装 Git的配置 用户信息 文本编辑器 差异分析工具 查看配置信息 三、Git的基本操作 基本原理 基本操作命令 基本操作示例 场景一:创建新仓库 场景二:拉取并编辑远程仓库 四、常见问…

开源PHP 代挂机源码,可对接QQ、网易云、哔哩哔哩、QQ空间、等级加速等等

本程序运行环境PHP5.6 95dg/config.php修改系统数据库 进入数据库绑定 你搭建的域名即可 部署完成 进入数据库 找到data 输入绑定授权域名即可进行授权打开此网站 网站是无对接接口 需要您自行找对接接口即可 本源码有点乱 有实力的铁铁 可以修改一下哦!

Spring MVC介绍

MVC模式是什么 MVC 模式,全称为 Model-View-Controller(模型-视图-控制器)模式,它是一种软件架构模式,其目标是将软件的用户界面(即前台页面)和业务逻辑分离,使代码具有更高的可扩展…

造测试数据

对应sql: from openpyxl import Workbook from faker import Faker# 创建一个Workbook对象 workbook Workbook() # 获取默认的活动工作表 sheet workbook.active# 创建一个Faker对象 fake Faker()# 写入表头 header [Name, Address, Email] sheet.append(heade…

ChatGPT 与 Python进行动态可视化分析

Python数据分析目前最为热门的岗位操作。 想使用Python进行可视化分析,但是又不想写代码,测试,验证。可以交给ChatGPT,open AI 来进行操作。 这样的动态图显示,我们只需要给ChatGPT发送一个指令,人工智能就能很快的实现这一操作。 请使用Python与Echarts做一个动态可视…

【LeetCode】3. 无重复字符的最长子串

3. 无重复字符的最长子串(中等) 方法:滑动窗口 哈希表 思路 这道题主要用到思路是:滑动窗口 什么是滑动窗口? 其实就是一个队列,比如例题中的 abcabcbb,进入这个队列(窗口)为 ab…

Vue安装过程的困惑解答——nodejs和vue关系、vue的项目结构

文章目录 一、为什么在使用vue前要下载nodejs?二、为什么安装nodejs后就能使用NPM包管理工具?三、为什么是V8引擎并且使用C实现?四、为什么会安装淘宝镜像?五、什么是webpack模板,为什么需要他?六、vue项目…

GIT命令只会抄却不理解?看完原理才能事半功倍!

系列文章目录 手把手教你安装Git,萌新迈向专业的必备一步 GIT命令只会抄却不理解?看完原理才能事半功倍! 系列文章目录一、Git 的特征1. 文件系统2. 分布式 二、GIT的术语1. 区域术语2. 名词术语1. 提交对象2. 分支3. HEAD4. 标签&#xff0…

无涯教程-Android - Linear Layout函数

Android LinearLayout是一个视图组,该视图组将垂直或水平的所有子级对齐。 Linear Layout - 属性 以下是LinearLayout特有的重要属性- Sr.NoAttribute & 描述1 android:id 这是唯一标识布局的ID。 2 android:baselineAligned 此值必须是布尔值,为…

chatGPT训练过程

强化学习基础 强化学习是指智能体在不确定环境中最大化其获得的奖励从而达到自主决策的目的。其执行过程为:智能体依据策略决策从而执行动作,然后感知环境获取环境的状态,进而得到奖励(以便下次再到相同状态时能采取更优的动作),…

(数学) 剑指 Offer 39. 数组中出现次数超过一半的数字 ——【Leetcode每日一题】

❓ 剑指 Offer 39. 数组中出现次数超过一半的数字 难度:简单 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 示例 1: 输入: [1, 2, 3, 2, 2, 2, 5, 4, 2] 输…

matlab使用教程(26)—常微分方程的求解

1.求解非刚性 ODE 本页包含两个使用 ode45 来求解非刚性常微分方程的示例。MATLAB 提供几个非刚性 ODE 求解器。 • ode45 • ode23 • ode78 • ode89 • ode113 对于大多数非刚性问题,ode45 的性能最佳。但对于允许较宽松的误差容限或刚度适中的问题&…

DataLoader的使用

示例代码: import torchvision from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter# 准备的测试数据集 test_data torchvision.datasets.CIFAR10("./dataset", trainFalse, transformtorchvision.transforms.…

控制goroutine 的并发执行数量

goroutine的数量上限是1048575吗? 正常项目,协程数量超过十万就需要引起重视。如果有上百万goroutine,一般是有问题的。 但并不是说协程数量的上限是100多w 1048575的来自类似如下的demo代码: package mainimport ( "fmt" "ma…

CXL 内存交织(Memory Interleaving)

🔥点击查看精选 CXL 系列文章🔥 🔥点击进入【芯片设计验证】社区,查看更多精彩内容🔥 📢 声明: 🥭 作者主页:【MangoPapa的CSDN主页】。⚠️ 本文首发于CSDN&#xff0c…

Web后端开发(请求响应)上

请求响应的概述 浏览器&#xff08;请求&#xff09;<--------------------------(HTTP协议)---------------------->&#xff08;响应&#xff09;Web服务器 请求&#xff1a;获取请求数据 响应&#xff1a;设置响应数据 BS架构&#xff1a;浏览器/服务器架构模式。…

uniapp项目实战系列(3):底部导航栏与头部导航栏的配置

目录 系列往期文章&#xff08;点击跳转&#xff09;uniapp项目实战系列(1)&#xff1a;导入数据库&#xff0c;启动后端服务&#xff0c;开启代码托管&#xff08;点击跳转&#xff09;uniapp项目实战系列(2)&#xff1a;新建项目&#xff0c;项目搭建&#xff0c;微信开发工具…

33、Flink之hive介绍与简单示例

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…

「MySQL-05」MySQL Workbench的下载和使用

目录 一、MySQL workbench的下载和安装 1. MySQL workbench介绍 2. 到MySQL官网下载mysql workbench 3. 安装workbench 二、创建能远程登录的用户并授权 1. 创建用户oj_client 2. 创建oj数据库 3. 给用户授权 4. 在Linux上登录用户oj_client检查其是否能操作oj数据库 三、使用…

C++ 友元

朋友可访问自己的东西&#xff0c;大概就这么个意思。即某类的友元类可访问该类的所有变量以及函数&#xff0c;或友元函数可以访问该类的变量以及函数&#xff0c;在朋友眼中没有任何隐藏&#xff0c;可谓时赤裸相对&#xff0c;肝胆相照&#xff0c;生生挚友。 注意&#xf…