机器学习算法示例的收集;MetaAI编码工具Code Llama;“天工AI搜索”首发实测

在这里插入图片描述

🦉 AI新闻

🚀 Meta推出新一代AI编码工具Code Llama,助力程序员提高开发效率

摘要:Meta推出Code Llama,这是一个基于Llama 2语言模型打造的AI编码工具,能够生成新的代码并调试人类编写的工作。Code Llama可根据代码核自然语言提示生成代码,也可以根据指定的代码进行完善和调试。Meta表示,在基准测试中,Code Llama优于目前公开可用的LLM模型,并凭借着53.7%的准确编写代码得分和56.2%在MBPP上的得分,在代码编写方面具有一定优势。Code Llama将通过GitHub免费开放,并推出三种不同参数的版本。该新闻受众广泛,技术和编程领域的读者对于这种能够提升开发效率的AI编码工具表现出较高的兴趣和关注度。

🚀 国内首款AI搜索产品“天工AI搜索”首发实测

这是一款国内首个正式落地的独立AI搜索产品,它通过AI模型对用户的自然语言提问进行理解,并从相关网页中提取信息进行自动生成和总结,形成针对性的回答,还支持多轮追问。相比传统搜索,它屏蔽了广告和低质量内容,提供更精准和高效的结果。

🚀 好未来自研数学大模型MathGPT开启内测

摘要:好未来宣布自研的数学大模型MathGPT开始内测,用户可通过官网免费试用体验。MathGPT是面向全球数学爱好者和科研机构的大模型,通过文字或图片上传数学题可获得解答反馈,也可随机生成数学题目并获得解答。目前支持中英文版本的PC端和移动端体验,题目类型涵盖小学、初中、高中的数学题。MathGPT的解题能力将持续提升,基于该模型的产品应用也在加速研发中。

🚀 三星计划于2023年发布自家版生成式AI,类ChatGPT

摘要:据韩媒报道,三星计划于9月12日举办Real Summit 2023活动,并公开自家版本的生成式AI,具备类似于ChatGPT的多种技能。目前,该AI主要用于内部员工,提高工作效率。预计于2023年底或2024年初向员工开放。三星已向韩国知识产权信息服务中心提交商标申请,可能将命名为“Simply Chat”。此举将对公众产生影响,引发广泛兴趣,具有新颖性和重要性。

总分数:90

🚀 英伟达财报业绩强劲,股价下滑至40倍市盈率,仍被认为被低估

摘要:本文报道了英伟达公布的新财季财报,该财报业绩超出分析师预期,预期市盈率跌至约40倍,低于5月份的63倍。投资者对其估值过高的担忧得到缓解,还有观点认为英伟达的股价仍被低估,有较大上涨空间。分析师普遍认为,英伟达能继续保持增长势头并达到其估值水平。英伟达宣布回购额外250亿美元的股票,也给看涨人士带来了欢呼。综合影响力、公众兴趣、新颖性和重要性等因素,本文新闻评分为85分。

🚀 Gartner预测2023年全球AI硬件销售额将达534亿美元

摘要:根据市场研究公司Gartner的最新预测,到2023年全球用于AI的硬件销售收入预计将同比增长20.9%,达到534亿美元。Gartner表示,生成式AI的发展和各种基于AI的应用在数据中心、边缘基础设施和端点设备中的广泛使用,需要部署GPU和“优化的半导体设备”,这将推动AI芯片的生产和部署。预计到2027年,AI芯片收入将达到1194亿美元。随着企业中AI工作负载的成熟,许多行业和IT组织将部署包含AI芯片的系统。

🚀 中国知网发布基于“大模型 + AIGC”的大数据知识管理系列产品

摘要:中国知网在“2023年创新与大数据知识管理研讨会”上发布了基于“大模型 + AIGC”的大数据知识管理系列产品。其中包括“大数据治理平台”、“数字标准智能应用平台”、“知网智能写作平台”和“中国经济社会大数据研究平台”。其中,知网 AI 智能写作是利用大模型和知识库开发的“文档智能生产系统”,可辅助用户快速、高效地编写文档,提升报告质量,并支持重写、续写、润色等功能。此举将推动数字化转型,加速数字技术与实体经济融合发展。评分:影响力25分,公众兴趣25分,新颖性25分,重要性25分。

🗼 AI知识

🔥 大型语言模型的事实性摘要对比研究

本文对Llama-2-70b、GPT-4、GPT-3.5-turbo等大型语言模型进行了事实性摘要的对比实验。结果表明,Llama-2-70b和GPT-4在事实准确性方面表现较好,而GPT-3.5-turbo和较小的Llama存在问题。实验也指出了顺序偏见和遵循指示的重要性等问题。建议Llama-2-70b和GPT-4用于事实性摘要。Llama 2与GPT-4相比,在等效的事实水平下成本明显更低。实验通过Anyscale Endpoints平台完成,利用Pandas和Ray进行了易于实验化。

🔥 机器学习算法示例的收集

这是一系列独立的Python机器学习算法示例的收集,包含人工神经网络、马尔可夫决策过程和降维等各种算法。每个示例都附有对原始研究论文或书籍的参考,这些论文或书籍首次提出了该算法。



更多AI工具,参考Github-AiBard123,国内AiBard123

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/61543.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

可控生成:ControlNet原理

论文:Adding Conditional Control to Text-to-Image Diffusion Models 代码:lllyasviel/ControlNet 简单来说ControlNet希望通过输入额外条件来控制大型图像生成模型,使得图像生成模型根据可控。 1. 动机 当前文生图任务中会出现如下问题&…

git私房菜

文章目录 1、公司项目开发Git协作流程2、合并相关的操作3、Git常用命令总结 公司中如何使用Git协同开发的?本文将具体介绍开发模式,以及一些常用命令。 1、公司项目开发Git协作流程 公司一个完整的项目出来,项目的推进是在主分支master上进行…

Python钢筋混凝土结构计算.pdf-T001-混凝土强度设计值

以下是使用Python求解上述问题的完整代码: # 输入参数 f_ck 35 # 混凝土的特征抗压强度(单位:MPa) f_cd 25 # 混凝土的强度设计值(单位:MPa) # 求解安全系数 gamma_c f_ck / f_cd # …

EXCEL中点击单元格,所在行和列都改变颜色

在日常工作中,尤其是办公室工作人群,尝尝需要处理大量的数据,在对数据进行修改时,时长发生看错行的事情,导致数据越改越乱,因此,我常用的一种方法就是选中单元格时,所在行、列标记为…

python基础教程:re模块用法详解

前言 嗨喽,大家好呀~这里是爱看美女的茜茜呐 一、正则表达式的特殊字符介绍 正则表达式 👇 👇 👇 更多精彩机密、教程,尽在下方,赶紧点击了解吧~ 素材、视频教程、完整代码、插件安装教程我都准备好了&a…

家政保洁行业小程序如何快速搭建

随着互联网的快速发展,家政保洁行业也逐渐向数字化转型。小程序作为一种轻量级应用,越来越成为各行各业进行线上推广的重要工具。那么,如何快速搭建家政保洁行业的小程序呢?本文将为你提供详细的步骤和指导。 一、准备开发环境 在…

YOLOv5算法改进(10)— 替换主干网络之GhostNet

前言:Hello大家好,我是小哥谈。GhostNet是一种针对计算机视觉任务的深度神经网络架构,它于2020年由中国科学院大学的研究人员提出。GhostNet的设计目标是在保持高精度的同时,减少模型的计算和存储成本。GhostNet通过引入Ghost模块…

深入理解Python中的多进程和多线程

前言 此篇文章将深入的讲解Python中的多进程和多线程 📝个人主页→数据挖掘博主ZTLJQ的主页 个人推荐python学习系列: ☄️爬虫JS逆向系列专栏 - 爬虫逆向教学 ☄️python系列专栏 - 从零开始学python 第一部分:多进程 多进程是指在操作系统中…

ssm学生公寓管理系统的设计与实现

ssm学生公寓管理系统的设计与实现106 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归…

mongodb 分片集群部署

文章目录 mongodb 分片部署二进制安装三台config 配置shard 分片安装shard1 安装shard2 安装shard3 安装mongos 安装数据库、集合启用分片创建集群认证文件创建集群用户部署常见问题 mongodb 分片部署 二进制安装 mkdir -p /data/mongodb tar xvf mongodb-linux-x86_64-rhel7…

算法 -汉诺塔,哈夫曼编码

有三个柱子,分别为 from、buffer、to。需要将 from 上的圆盘全部移动到 to 上,并且要保证小圆盘始终在大圆盘上。 这是一个经典的递归问题,分为三步求解: ① 将 n-1 个圆盘从 from -> buffer ② 将 1 个圆盘从 from -> to ③ 将 n-1 个圆盘从 buffer -> to 如果…

opencv android sdk 使用中的问题

Plugin with id ‘kotlin-android’ not found 在build.gradle(:app)中添加以下内容 buildscript {ext {Kotlin_Verion "1.9.10"}dependencies {classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$Kotlin_Verion"}repositories {mavenCentral()} …

论文浅尝 | 利用对抗攻击策略缓解预训练语言模型中的命名实体情感偏差问题...

笔记整理:田家琛,天津大学博士,研究方向为文本分类 链接:https://ojs.aaai.org/index.php/AAAI/article/view/26599 动机 近年来,随着预训练语言模型(PLMs)在情感分类领域的广泛应用&#xff0c…

数据结构--树4.2.2(二叉树--遍历)

目录 一、二叉树的建立 二、二叉树的遍历算法 一、二叉树的建立 CreateBitree(Bitree *t){char c;scanf("%c",&c);if( c){*t NULL;}else{*t(Bitnode*)malloc(sizeof(Bitnode));(*t)->data c;CreateBitree(&(*t)->lchild);CreateBitree(&(*t)-&…

打造个人的NAS云存储-通过Nextcloud搭建私有云盘实现公网远程访问

文章目录 摘要1. 环境搭建2. 测试局域网访问3. 内网穿透3.1 ubuntu本地安装cpolar3.2 创建隧道3.3 测试公网访问 4 配置固定http公网地址4.1 保留一个二级子域名4.1 配置固定二级子域名4.3 测试访问公网固定二级子域名 摘要 Nextcloud,它是ownCloud的一个分支,是一个文件共享服…

模拟电子技术基础学习笔记二 杂质半导体

通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 按掺入的杂质元素不同,可形成N型半导体和P型半导体 控制掺入杂质元素的浓度,可以控制杂质半导体的导电性能。 一、N型半导体(negative Semic…

ui网页设计实训心得

ui网页设计实训心得篇一 通过这次实训对这门课程的学习,做好网页,并不是一件容易的事,它包括网页的选题、 内容采集整理、 图片的处理、 页面的排版设置、 背景及其整套网页的色调等很多东西。 所以我得出一下总结: 一、 准备资…

CUBLAS库入门教程(从环境配置讲起)

文章目录 前言一、搭建环境二、简单介绍三、 具体例子四、疑问 前言 CUBLAS库是NVIDIA CUDA用于线性代数计算的库。使用CUBLAS库的原因是我不想去直接写核函数。 (当然,你还是得学习核函数该怎么写。但是人家写好的肯定比我自己写的更准确!&…

[PyTorch][chapter 54][Variational Auto-Encoder 实战]

前言: 这里主要实现: Variational Autoencoders (VAEs) 变分自动编码器 其训练效果如下 训练的过程中要注意调节forward 中的kle ,调参。 整个工程两个文件: vae.py main.py 目录: vae main 一 vae 文件名: vae…

typora使用

1.主题配置 先打开主题文件夹, 文件–>>偏好设置–>>外观–>>打开主题文件夹 1.1字体 修改字体需要修改css文件,确定当前所用主题,可以在typora菜单点击主题,看看当前勾选的是哪个主题,比如gith…