leetcode 动态规划(最后一块石头的重量II、目标和、一和零)

1049.最后一块石头的重量II

力扣题目链接(opens new window)

题目难度:中等

有一堆石头,每块石头的重量都是正整数。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;

如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。

最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

示例:

输入:[2,7,4,1,8,1]
输出:1
解释:

组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
提示:

1 <= stones.length <= 30
1 <= stones[i] <= 1000

思路
如果对背包问题不都熟悉先看这两篇:

动态规划:关于01背包问题,你该了解这些!(opens new window)
动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。

是不是感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。

本题物品的重量为stones[i],物品的价值也为stones[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。

接下来进行动规五步曲:

确定dp数组以及下标的含义
dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

一些同学可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],看着有点晕乎。

大家可以再去看 dp[j]的含义。

dp数组如何初始化
既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

我这里就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。

代码为:

vector dp(15001, 0);
确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

for (int i = 0; i < stones.size(); i++) { // 遍历物品for (int j = target; j >= stones[i]; j--) { // 遍历背包dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);}
}

举例推导dp数组
举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:
在这里插入图片描述
最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

以上分析完毕,C++代码如下:

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {vector<int> dp(15001, 0);int sum = 0;for (int i = 0; i < stones.size(); i++) sum += stones[i];int target = sum / 2;for (int i = 0; i < stones.size(); i++) { // 遍历物品for (int j = target; j >= stones[i]; j--) { // 遍历背包dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - dp[target] - dp[target];}
};

时间复杂度:O(m × n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
空间复杂度:O(m)

总结

本题其实和416. 分割等和子集 (opens new window)几乎是一样的,只是最后对dp[target]的处理方式不同。

  1. 分割等和子集 (opens new window)相当于是求背包是否正好装满,而本题是求背包最多能装多少。

Python:

class Solution:def lastStoneWeightII(self, stones: List[int]) -> int:dp = [0] * 15001total_sum = sum(stones)target = total_sum // 2for stone in stones:  # 遍历物品for j in range(target, stone - 1, -1):  # 遍历背包dp[j] = max(dp[j], dp[j - stone] + stone)return total_sum - dp[target] - dp[target]

(简化版)

class Solution:def lastStoneWeightII(self, stones):total_sum = sum(stones)target = total_sum // 2dp = [0] * (target + 1)for stone in stones:for j in range(target, stone - 1, -1):dp[j] = max(dp[j], dp[j - stone] + stone)return total_sum - 2* dp[-1]

二维DP版

class Solution:def lastStoneWeightII(self, stones: List[int]) -> int:total_sum = sum(stones)target = total_sum // 2# 创建二维dp数组,行数为石头的数量加1,列数为target加1# dp[i][j]表示前i个石头能否组成总重量为jdp = [[False] * (target + 1) for _ in range(len(stones) + 1)]# 初始化第一列,表示总重量为0时,前i个石头都能组成for i in range(len(stones) + 1):dp[i][0] = Truefor i in range(1, len(stones) + 1):for j in range(1, target + 1):# 如果当前石头重量大于当前目标重量j,则无法选择该石头if stones[i - 1] > j:dp[i][j] = dp[i - 1][j]else:# 可选择该石头或不选择该石头dp[i][j] = dp[i - 1][j] or dp[i - 1][j - stones[i - 1]]# 找到最大的重量i,使得dp[len(stones)][i]为True# 返回总重量减去两倍的最接近总重量一半的重量for i in range(target, -1, -1):if dp[len(stones)][i]:return total_sum - 2 * ireturn 0

一维DP版

class Solution:def lastStoneWeightII(self, stones):total_sum = sum(stones)target = total_sum // 2dp = [False] * (target + 1)dp[0] = Truefor stone in stones:for j in range(target, stone - 1, -1):# 判断当前重量是否可以通过选择之前的石头得到或选择当前石头和之前的石头得到dp[j] = dp[j] or dp[j - stone]for i in range(target, -1, -1):if dp[i]:# 返回剩余石头的重量,即总重量减去两倍的最接近总重量一半的重量return total_sum - 2 * ireturn 0

494.目标和

力扣题目链接(opens new window)

难度:中等

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例:

输入:nums: [1, 1, 1, 1, 1], S: 3 输出:5 解释:

-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

提示:

数组非空,且长度不会超过 20 。
初始的数组的和不会超过 1000 。
保证返回的最终结果能被 32 位整数存下。
思路
如果对背包问题不都熟悉先看这两篇:

动态规划:关于01背包问题,你该了解这些!(opens new window)
动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
如果跟着「代码随想录」一起学过回溯算法系列 (opens new window)的录友,看到这道题,应该有一种直觉,就是感觉好像回溯法可以爆搜出来。

事实确实如此,下面我也会给出相应的代码,只不过会超时。

这道题目咋眼一看和动态规划背包啥的也没啥关系。

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合。

回溯算法

在回溯算法系列中,一起学过这道题目回溯算法:39. 组合总和 (opens new window)的录友应该感觉很熟悉,这不就是组合总和问题么?

此时可以套组合总和的回溯法代码,几乎不用改动。

当然,也可以转变成序列区间选+ 或者 -,使用回溯法,那就是另一个解法。

我也把代码给出来吧,大家可以了解一下,回溯的解法,以下是本题转变为组合总和问题的回溯法代码:

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {if (sum == target) {result.push_back(path);}// 如果 sum + candidates[i] > target 就终止遍历for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {sum += candidates[i];path.push_back(candidates[i]);backtracking(candidates, target, sum, i + 1);sum -= candidates[i];path.pop_back();}}
public:int findTargetSumWays(vector<int>& nums, int S) {int sum = 0;for (int i = 0; i < nums.size(); i++) sum += nums[i];if (S > sum) return 0; // 此时没有方案if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和// 以下为回溯法代码result.clear();path.clear();sort(nums.begin(), nums.end()); // 需要排序backtracking(nums, bagSize, 0, 0);return result.size();}
};

当然以上代码超时了。

也可以使用记忆化回溯,但这里我就不在回溯上下功夫了,直接看动规吧

#动态规划
如何转化为01背包问题呢。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法。

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
同时如果 S的绝对值已经大于sum,那么也是没有方案的。

(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案
再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

确定dp数组以及下标的含义
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。

下面我都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来,这个我在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)也有介绍。

确定递推公式
有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]
这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

dp数组如何初始化
从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。

其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。

所以本题我们应该初始化 dp[0] 为 1。

可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

举例推导dp数组
输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:
在这里插入图片描述
C++代码如下:

class Solution {
public:int findTargetSumWays(vector<int>& nums, int S) {int sum = 0;for (int i = 0; i < nums.size(); i++) sum += nums[i];if (abs(S) > sum) return 0; // 此时没有方案if ((S + sum) % 2 == 1) return 0; // 此时没有方案int bagSize = (S + sum) / 2;vector<int> dp(bagSize + 1, 0);dp[0] = 1;for (int i = 0; i < nums.size(); i++) {for (int j = bagSize; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[bagSize];}
};

Python
回溯版

class Solution:def backtracking(self, candidates, target, total, startIndex, path, result):if total == target:result.append(path[:])  # 将当前路径的副本添加到结果中# 如果 sum + candidates[i] > target,则停止遍历for i in range(startIndex, len(candidates)):if total + candidates[i] > target:breaktotal += candidates[i]path.append(candidates[i])self.backtracking(candidates, target, total, i + 1, path, result)total -= candidates[i]path.pop()def findTargetSumWays(self, nums: List[int], target: int) -> int:total = sum(nums)if target > total:return 0  # 此时没有方案if (target + total) % 2 != 0:return 0  # 此时没有方案,两个整数相加时要注意数值溢出的问题bagSize = (target + total) // 2  # 转化为组合总和问题,bagSize就是目标和# 以下是回溯法代码result = []nums.sort()  # 需要对nums进行排序self.backtracking(nums, bagSize, 0, 0, [], result)return len(result)

二维DP

class Solution:def findTargetSumWays(self, nums: List[int], target: int) -> int:total_sum = sum(nums)  # 计算nums的总和if abs(target) > total_sum:return 0  # 此时没有方案if (target + total_sum) % 2 == 1:return 0  # 此时没有方案target_sum = (target + total_sum) // 2  # 目标和# 创建二维动态规划数组,行表示选取的元素数量,列表示累加和dp = [[0] * (target_sum + 1) for _ in range(len(nums) + 1)]# 初始化状态dp[0][0] = 1# 动态规划过程for i in range(1, len(nums) + 1):for j in range(target_sum + 1):dp[i][j] = dp[i - 1][j]  # 不选取当前元素if j >= nums[i - 1]:dp[i][j] += dp[i - 1][j - nums[i - 1]]  # 选取当前元素return dp[len(nums)][target_sum]  # 返回达到目标和的方案数

一维DP

class Solution:def findTargetSumWays(self, nums: List[int], target: int) -> int:total_sum = sum(nums)  # 计算nums的总和if abs(target) > total_sum:return 0  # 此时没有方案if (target + total_sum) % 2 == 1:return 0  # 此时没有方案target_sum = (target + total_sum) // 2  # 目标和dp = [0] * (target_sum + 1)  # 创建动态规划数组,初始化为0dp[0] = 1  # 当目标和为0时,只有一种方案,即什么都不选for num in nums:for j in range(target_sum, num - 1, -1):dp[j] += dp[j - num]  # 状态转移方程,累加不同选择方式的数量return dp[target_sum]  # 返回达到目标和的方案数

474.一和零

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 1:

输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3

输出:4

解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。 其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = [“10”, “0”, “1”], m = 1, n = 1
输出:2
解释:最大的子集是 {“0”, “1”} ,所以答案是 2 。
提示:

1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i] 仅由 ‘0’ 和 ‘1’ 组成
1 <= m, n <= 100

思路
如果对背包问题不都熟悉先看这两篇:

动态规划:关于01背包问题,你该了解这些!(opens new window)
动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
这道题目,还是比较难的,也有点像程序员自己给自己出个脑筋急转弯,程序员何苦为难程序员呢。

来说题,本题不少同学会认为是多重背包,一些题解也是这么写的。

其实本题并不是多重背包,再来看一下这个图,捋清几种背包的关系

416.分割等和子集1

多重背包是每个物品,数量不同的情况。

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包。

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲:

确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。

确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

dp数组如何初始化
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

代码如下:

for (string str : strs) { // 遍历物品int oneNum = 0, zeroNum = 0;for (char c : str) {if (c == '0') zeroNum++;else oneNum++;}for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!for (int j = n; j >= oneNum; j--) {dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}
}

有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

举例推导dp数组
以输入:[“10”,“0001”,“111001”,“1”,“0”],m = 3,n = 3为例

最后dp数组的状态如下所示:

474.一和零

以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0for (string str : strs) { // 遍历物品int oneNum = 0, zeroNum = 0;for (char c : str) {if (c == '0') zeroNum++;else oneNum++;}for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!for (int j = n; j >= oneNum; j--) {dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}}return dp[m][n];}
};

python

class Solution:def findMaxForm(self, strs: List[str], m: int, n: int) -> int:dp = [[0] * (n + 1) for _ in range(m + 1)]  # 创建二维动态规划数组,初始化为0for s in strs:  # 遍历物品zeroNum = s.count('0')  # 统计0的个数oneNum = len(s) - zeroNum  # 统计1的个数for i in range(m, zeroNum - 1, -1):  # 遍历背包容量且从后向前遍历for j in range(n, oneNum - 1, -1):dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)  # 状态转移方程return dp[m][n]

DP(版本二)

class Solution:def findMaxForm(self, strs: List[str], m: int, n: int) -> int:dp = [[0] * (n + 1) for _ in range(m + 1)]  # 创建二维动态规划数组,初始化为0# 遍历物品for s in strs:ones = s.count('1')  # 统计字符串中1的个数zeros = s.count('0')  # 统计字符串中0的个数# 遍历背包容量且从后向前遍历for i in range(m, zeros - 1, -1):for j in range(n, ones - 1, -1):dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1)  # 状态转移方程return dp[m][n]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/613204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用友移动管理系统 upload任意文件上传漏洞

产品介绍 用友移动系统管理系统是用友公司推出的一款移动办公解决方案&#xff0c;旨在帮助企业实现移动办公、提高管理效率和员工工作灵活性。 漏洞描述 用友移动系统管理系统/mobsm/common/upload等接口存在任意文件上传漏洞&#xff0c;未经授权攻击者通过漏洞上传任意文…

Flutter组件GridView使用介绍

介绍 GridView 是 Flutter 中用于创建网格布局的滚动小部件。它可以创建多列布局&#xff0c;并且每个网格单元可以包含一个小部件。 GridView 提供了几种构造函数来创建不同类型的网格布局&#xff1a; GridView&#xff1a;最通用的构造函数&#xff0c;完全自定义网格布局…

怎么在unity3D工程中导入Newtonsoft.Json

打开 Unity 编辑器。 转到菜单栏的 “Window”&#xff08;窗口&#xff09;选项&#xff0c;然后选择 “Package Manager”&#xff08;包管理器&#xff09; 在搜索框中输入 “Newtonsoft Json” 进行搜索。 注意&#xff1a;要选择Unity Registry 在搜索结果中&#xf…

GC6109——双通道5V低电压步进电机驱动芯片,低噪声、低振动,应用摄像机,机器人等产品中

GC6109是双通道5V低电压步进电机驱动器&#xff0c;具有低噪声、低振动的特点&#xff0c;特别适用于相机的变焦和对焦系统&#xff0c;万向节和其他精密、低噪声的STM控制系统。该芯片为每个通道集成了256微步驱动器。带SPl接口&#xff0c;用户可以方便地调整驱动器的参数。内…

SpringCloudAlibaba微服务架构实战派上下册技术交流!

另外我的新书RocketMQ消息中间件实战派上下册&#xff0c;在京东已经上架啦&#xff0c;目前都是5折&#xff0c;非常的实惠。 https://item.jd.com/14337086.html​编辑https://item.jd.com/14337086.html “RocketMQ消息中间件实战派上下册”是我既“Spring Cloud Alibaba微…

Nginx介绍与安装

目录 nginx服务 1、Nginx 介绍 2、为什么选择 nginx 3、IO多路复用 1、I/O multiplexing【多并发】 2、一个请求到来了&#xff0c;nginx使用epoll接收请求的过程是怎样的? 3、异步&#xff0c;非阻塞 4、nginx 的内部技术架构 5、yum安装部署nginx和配置管理 1.获取…

PHP企业物资管理系统源码带文字安装教程

PHP企业物资管理系统源码带文字安装教程 技术架构 主要框架 : PHP7.0 laravel5.4  mysql5.5.36 composer1.3.2(依赖管理) 前端 : jquery bootstrap jstree&#xff08;树形结构&#xff09; echart&#xff08;图表&#xff09; layer&#xff08;弹出层&#xff09; 企…

JavaScript递归技巧的前世今生:深入解析递归及其与堆栈的关系

&#x1f9d1;‍&#x1f393; 个人主页&#xff1a;《爱蹦跶的大A阿》 &#x1f525;当前正在更新专栏&#xff1a;《VUE》 、《JavaScript保姆级教程》、《krpano》 ​ ​ ✨ 前言 递归作为一种能够用简洁的方式定义复杂对象的编程技巧,在计算机科学中被广泛应用。它借助系…

OpenHarmony南向之LCD显示屏

OpenHarmony南向之LCD显示屏 概述 LCD&#xff08;Liquid Crystal Display&#xff09;驱动&#xff0c;通过对显示器上下电、初始化显示器驱动IC&#xff08;Integrated Circuit&#xff09;内部寄存器等操作&#xff0c;使其可以正常工作。 HDF Display驱动模型 LCD器件驱…

示例说明 Makefile 中的 $(@F),及其用法示例$$dir $@ $< $^ %.c

备忘一个不错的开源编辑器CudaText 下载网址&#xff1a; CudaText - Browse /release at SourceForge.net CudaText 主页&#xff1a; CudaText - Home 1&#xff0c;含义及验证 在 Makefile 中&#xff0c;$(F) 表示当前规则的目标文件名&#xff08;不包括路径部分&…

都2024年了,FP卖家还不知道AB站怎么玩?

自从开始写FP独立站各种运营技巧和黑科技的文章&#xff0c;经常都会有朋友来私V&#xff0c;询问怎么进行AB站跳转。 可能是现在平台对于FP商家的限制越来越多&#xff0c;再加上如今到处都是“内卷”的电商环境&#xff0c;让FP商家生存越来越艰难&#xff0c;今天就着重讲一…

【踩坑】JDK1.8 AudioSystem 无法关闭流的问题

文章目录 一、前言二、开始狼人杀嫌疑人1&#xff1a;嫌疑人2&#xff1a; 三、复盘Jdk8原生bug解决方法和原理解析 一、前言 做了一个基于文字转语言的小接口&#xff0c;想删除本地wav文件来着&#xff0c;结果发现删除不了。 很明显被占用了&#xff0c;还是被Java占用了……

Linux内核源码分析(强烈推荐收藏!)

前言&#xff1a;Linux内核是由林纳斯托瓦兹&#xff08;Linus Torvalds&#xff09;在1991年开始开发的。当时他为了得到一个可以运行UNIX操作系统的个人计算机&#xff0c;开始编写一个操作系统内核&#xff0c;并将其命名为Linux。随后&#xff0c;越来越多的开发者加入到项…

【论文】:ALOHA双手远程操作手臂

对于机器人来说&#xff0c;诸如穿扎带或插入电池等精细操作任务是众所周知的困难&#xff0c;因为它们需要精确度、接触力的仔细协调以及闭环视觉反馈。执行这些任务通常需要高端机器人、精确的传感器或仔细的校准&#xff0c;这些可能既昂贵又难以设置。学习能否使用低成本且…

计算机组成原理之计算机硬件发展和计算机系统的组成

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…

算法第4版 第2章排序

综述&#xff1a;5个小节&#xff0c;四种排序应用&#xff0c;初级排序、归并排序、快速排序、优先队列 2.1.初级排序 排序算法模板&#xff0c;less(), exch(), 排序代码在sort()方法中&#xff1b; 选择排序&#xff1a;如升序排列&#xff0c;1.找到数组中最小的元素&am…

llama_index 创始人为我们展示召回提升策略(提升15%)

用句子向量替换为句子向量 句子检索&#xff0c;将句子转化为向量。在检索的过程中&#xff0c;假如句子命中&#xff0c;则将句子周围的内容也当做检索内容。 对比句子检索和之前的按块去做切分的检索。可以看到&#xff0c;内容的相关性提升了8%&#xff0c; 构建数据的时候…

如何利用ChatGPT快速生成月报?

随着每个月的结束&#xff0c;个人和团队经常需要编写月报来回顾和总结。这项任务通常消耗大量时间和精力。幸运的是&#xff0c;借助ChatGPT&#xff0c;这个过程可以变得更加简单和高效。接下来&#xff0c;我将详细介绍如何利用ChatGPT快速生成月报&#xff0c;从而帮助你节…

NSSCTF Interesting_include

开启环境: 通过审计,我们可知: flag在flag.php中,可以利用php中伪协议 payload:?filterphp://filter/readconvert.base64-encode/resourceflag.php 将其base64解码就是flag. NSSCTF{3dc54721-be9e-444c-8228-7133fba76ad4}

大数据系列之:腾讯云服务器性能和价格比较

大数据系列之&#xff1a;腾讯云服务器性能和价格比较 一、磁盘性能和价格比较二、高性能云硬盘三、ssd云硬盘四、极速型ssd云硬盘五、增强型ssd云硬盘六、查看腾讯云服务器价格 一、磁盘性能和价格比较 磁盘名称高性能ssd云硬盘极速型ssd云硬盘增强型ssd云硬盘规格500g 5800 …