e2studio开发磁力计LIS2MDL(1)----轮询获取磁力计数据

e2studio开发磁力计LIS2MDL.1--轮询获取磁力计数据

  • 概述
  • 视频教学
  • 样品申请
  • 源码下载
  • 速率
  • 新建工程
  • 工程模板
  • 保存工程路径
  • 芯片配置
  • 工程模板选择
  • 时钟设置
  • UART配置
  • UART属性配置
  • 设置e2studio堆栈
  • e2studio的重定向printf设置
  • R_SCI_UART_Open()函数原型
  • 回调函数user_uart_callback ()
  • printf输出重定向到串口
  • 通信模式
  • IIC属性配置
  • IIC配置
  • R_IIC_MASTER_Open()函数原型
  • R_IIC_MASTER_Write()函数原型
  • R_IIC_MASTER_Read()函数原型
  • sci_i2c_master_callback()回调函数
  • 参考程序
  • 初始换管脚
  • 获取ID
  • 复位操作
  • BDU设置
  • 设置速率
  • 启用偏移消除
  • 开启温度补偿
  • 设置为连续模式
  • 轮询读取数据
  • 主程序
  • 演示

概述

本文将介绍如何使用 LIS2MDL 传感器来读取数据。主要步骤包括初始化传感器接口、验证设备ID、配置传感器的数据输出率和滤波器,以及通过轮询方式持续读取磁力数据和温度数据。读取到的数据会被转换为适当的单位并通过串行通信输出。
这个传感器常用于多种电子设备中,以提供精确的磁场强度数据,从而用于指南针应用、位置追踪或者动作检测等功能。

最近在弄ST和瑞萨RA的课程,需要样片的可以加群申请:615061293 。

在这里插入图片描述

视频教学

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

源码下载

速率

该模块支持的速度为普通模式(100k)、快速模式(400k)、快速模式+(1M)、高速模式(3.4M)。

在这里插入图片描述

新建工程

在这里插入图片描述

工程模板

在这里插入图片描述

保存工程路径

在这里插入图片描述

芯片配置

本文中使用R7FA4M2AD3CFL来进行演示。
在这里插入图片描述

工程模板选择

在这里插入图片描述

时钟设置

开发板上的外部高速晶振为12M.

在这里插入图片描述
需要修改XTAL为12M。

在这里插入图片描述

UART配置

在这里插入图片描述
点击Stacks->New Stack->Driver->Connectivity -> UART Driver on r_sci_uart。
在这里插入图片描述

UART属性配置

在这里插入图片描述

设置e2studio堆栈

printf函数通常需要设置堆栈大小。这是因为printf函数在运行时需要使用栈空间来存储临时变量和函数调用信息。如果堆栈大小不足,可能会导致程序崩溃或不可预期的行为。
printf函数使用了可变参数列表,它会在调用时使用栈来存储参数,在函数调用结束时再清除参数,这需要足够的栈空间。另外printf也会使用一些临时变量,如果栈空间不足,会导致程序崩溃。
因此,为了避免这类问题,应该根据程序的需求来合理设置堆栈大小。

在这里插入图片描述

e2studio的重定向printf设置

在这里插入图片描述
在嵌入式系统的开发中,尤其是在使用GNU编译器集合(GCC)时,–specs 参数用于指定链接时使用的系统规格(specs)文件。这些规格文件控制了编译器和链接器的行为,尤其是关于系统库和启动代码的链接。–specs=rdimon.specs 和 --specs=nosys.specs 是两种常见的规格文件,它们用于不同的场景。
–specs=rdimon.specs
用途: 这个选项用于链接“Redlib”库,这是为裸机(bare-metal)和半主机(semihosting)环境设计的C库的一个变体。半主机环境是一种特殊的运行模式,允许嵌入式程序通过宿主机(如开发PC)的调试器进行输入输出操作。
应用场景: 当你需要在没有完整操作系统的环境中运行程序,但同时需要使用调试器来处理输入输出(例如打印到宿主机的终端),这个选项非常有用。
特点: 它提供了一些基本的系统调用,通过调试接口与宿主机通信。
–specs=nosys.specs
用途: 这个选项链接了一个非常基本的系统库,这个库不提供任何系统服务的实现。
应用场景: 适用于完全的裸机程序,其中程序不执行任何操作系统调用,比如不进行文件操作或者系统级输入输出。
特点: 这是一个更“裸”的环境,没有任何操作系统支持。使用这个规格文件,程序不期望有操作系统层面的任何支持。
如果你的程序需要与宿主机进行交互(如在开发期间的调试),并且通过调试器进行基本的输入输出操作,则使用 --specs=rdimon.specs。
如果你的程序是完全独立的,不需要任何形式的操作系统服务,包括不进行任何系统级的输入输出,则使用 --specs=nosys.specs。
在这里插入图片描述

R_SCI_UART_Open()函数原型

在这里插入图片描述

故可以用 R_SCI_UART_Open()函数进行配置,开启和初始化UART。

 /* Open the transfer instance with initial configuration. */err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);assert(FSP_SUCCESS == err);

回调函数user_uart_callback ()

当数据发送的时候,可以查看UART_EVENT_TX_COMPLETE来判断是否发送完毕。

在这里插入图片描述
在这里插入图片描述

可以检查检查 “p_args” 结构体中的 “event” 字段的值是否等于 “UART_EVENT_TX_COMPLETE”。如果条件为真,那么 if 语句后面的代码块将会执行。

fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{if(p_args->event == UART_EVENT_TX_COMPLETE){uart_send_complete_flag = true;}
}

printf输出重定向到串口

打印最常用的方法是printf,所以要解决的问题是将printf的输出重定向到串口,然后通过串口将数据发送出去。
注意一定要加上头文件#include <stdio.h>

#ifdef __GNUC__                                 //串口重定向#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endifPUTCHAR_PROTOTYPE
{err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);if(FSP_SUCCESS != err) __BKPT();while(uart_send_complete_flag == false){}uart_send_complete_flag = false;return ch;
}int _write(int fd,char *pBuffer,int size)
{for(int i=0;i<size;i++){__io_putchar(*pBuffer++);}return size;
}

通信模式

对于LIS2MDL,可以使用SPI或者IIC进行通讯。
最小系统图如下所示。
在这里插入图片描述

在CS管脚为1的时候,为IIC模式
在这里插入图片描述

本文使用的板子原理图如下所示。

在这里插入图片描述

CS对应到RA4M2板子上的端口为P014。
在这里插入图片描述

配置为输出管脚。

在这里插入图片描述

    R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH);

IIC属性配置

查看手册,可以得知LIS2MDL的IIC地址为“0011110” ,即0x1E

在这里插入图片描述

IIC配置

配置RA4M2的I2C接口,使其作为I2C master进行通信。
查看开发板原理图,对应的IIC为P407和P408。

在这里插入图片描述

点击Stacks->New Stack->Connectivity -> I2C Master(r_iic_master)。

在这里插入图片描述

设置IIC的配置,需要注意从机的地址。

在这里插入图片描述

R_IIC_MASTER_Open()函数原型

R_IIC_MASTER_Open()函数为执行IIC初始化,开启配置如下所示。

    /* Initialize the I2C module */err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);/* Handle any errors. This function should be defined by the user. */assert(FSP_SUCCESS == err);

R_IIC_MASTER_Write()函数原型

在这里插入图片描述
R_IIC_MASTER_Write()函数是向IIC设备中写入数据,写入格式如下所示。

    err = R_IIC_MASTER_Write(&g_i2c_master0_ctrl, &reg, 1, true);assert(FSP_SUCCESS == err);

R_IIC_MASTER_Read()函数原型

在这里插入图片描述

R_SCI_I2C_Read()函数是向IIC设备中读取数据,读取格式如下所示。

    /* Read data from I2C slave */err = R_IIC_MASTER_Read(&g_i2c_master0_ctrl, bufp, len, false);assert(FSP_SUCCESS == err);

sci_i2c_master_callback()回调函数

对于数据是否发送完毕,可以查看是否获取到I2C_MASTER_EVENT_TX_COMPLETE字段。

在这里插入图片描述

/* Callback function */
i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED;
uint32_t  timeout_ms = 100000;
void sci_i2c_master_callback(i2c_master_callback_args_t *p_args)
{i2c_event = I2C_MASTER_EVENT_ABORTED;if (NULL != p_args){/* capture callback event for validating the i2c transfer event*/i2c_event = p_args->event;}
}

参考程序

https://github.com/STMicroelectronics/lis2mdl-pid

初始换管脚

使能CS为高电平,配置为IIC模式。

       R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH);       /* Initialize the I2C module */err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);/* Handle any errors. This function should be defined by the user. */assert(FSP_SUCCESS == err);/* Initialize mems driver interface */stmdev_ctx_t dev_ctx;dev_ctx.write_reg = platform_write;dev_ctx.read_reg = platform_read;dev_ctx.handle = &SENSOR_BUS;/* Wait sensor boot time */platform_delay(BOOT_TIME);

获取ID

可以向WHO_AM_I (4Fh)获取固定值,判断是否为0x40

在这里插入图片描述
is2mdl_device_id_get为获取函数。

在这里插入图片描述

对应的获取ID驱动程序,如下所示。

  /* Wait sensor boot time */platform_delay(BOOT_TIME);/* Check device ID */lis2mdl_device_id_get(&dev_ctx, &whoamI);printf("LIS2MDL_ID=0x%x,whoamI=0x%x\n",LIS2MDL_ID,whoamI);if (whoamI != LIS2MDL_ID)while (1) {/* manage here device not found */}

复位操作

可以向CFG_REG_A (60h)的SOFT_RST寄存器写入1进行复位。

在这里插入图片描述

lis2mdl_reset_set为重置函数。

在这里插入图片描述

对应的驱动程序,如下所示。

 /* Restore default configuration */lis2mdl_reset_set(&dev_ctx, PROPERTY_ENABLE);do {lis2mdl_reset_get(&dev_ctx, &rst);} while (rst);

BDU设置

在很多传感器中,数据通常被存储在输出寄存器中,这些寄存器分为两部分:MSB和LSB。这两部分共同表示一个完整的数据值。例如,在一个加速度计中,MSB和LSB可能共同表示一个加速度的测量值。
连续更新模式(BDU = ‘0’):在默认模式下,输出寄存器的值会持续不断地被更新。这意味着在你读取MSB和LSB的时候,寄存器中的数据可能会因为新的测量数据而更新。这可能导致一个问题:当你读取MSB时,如果寄存器更新了,接下来读取的LSB可能就是新的测量值的一部分,而不是与MSB相对应的值。这样,你得到的就是一个“拼凑”的数据,它可能无法准确代表任何实际的测量时刻。
块数据更新(BDU)模式(BDU = ‘1’):当激活BDU功能时,输出寄存器中的内容不会在读取MSB和LSB之间更新。这就意味着一旦开始读取数据(无论是先读MSB还是LSB),寄存器中的那一组数据就被“锁定”,直到两部分都被读取完毕。这样可以确保你读取的MSB和LSB是同一测量时刻的数据,避免了读取到代表不同采样时刻的数据。
简而言之,BDU位的作用是确保在读取数据时,输出寄存器的内容保持稳定,从而避免读取到拼凑或错误的数据。这对于需要高精度和稳定性的应用尤为重要。
可以向CTRL3 (12h)的BDU寄存器写入1进行开启。

在这里插入图片描述

对应的驱动程序,如下所示。

  /* Enable Block Data Update */lis2mdl_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);

设置速率

速率可以通过CFG_REG_A (60h)的ODR设置速率。

在这里插入图片描述

设置速率可以使用如下函数。

  /* Set Output Data Rate */lis2mdl_data_rate_set(&dev_ctx, LIS2MDL_ODR_10Hz);

启用偏移消除

LIS2MDL 磁力计的配置寄存器(CFG_REG_B)的OFF_CANC - 这个位用于启用或禁用偏移消除。
这意味着每次磁力计准备输出新的测量数据时,它都会自动进行偏移校准,以确保数据的准确性。这通常用于校准传感器,以消除由于传感器偏移或环境因素引起的任何误差。
在这里插入图片描述

  /* Set / Reset sensor mode */lis2mdl_set_rst_mode_set(&dev_ctx, LIS2MDL_SENS_OFF_CANC_EVERY_ODR);

开启温度补偿

开启温度补偿可以通过CFG_REG_A (60h)的COMP_TEMP_EN进行配置。
在这里插入图片描述

  /* Enable temperature compensation */lis2mdl_offset_temp_comp_set(&dev_ctx, PROPERTY_ENABLE);

设置为连续模式

LIS2MDL 磁力计 CFG_REG_A (60h) 配置寄存器的MD1 和 MD0 - 这两个位用于选择设备的工作模式。
00 - 连续模式,设备连续进行测量并将结果放在数据寄存器中。
01 - 单次模式,设备进行单次测量,然后返回到空闲模式。
10 和 11 - 空闲模式,设备被置于空闲模式,但I2C和SPI接口仍然激活
在这里插入图片描述

  /* Set device in continuous mode */lis2mdl_operating_mode_set(&dev_ctx, LIS2MDL_CONTINUOUS_MODE);

轮询读取数据

对于数据是否准备好,可以查看STATUS_REG (67h)的Zyxda位,判断是否有新数据到达。
在这里插入图片描述

    uint8_t reg;/* Read output only if new value is available */lis2mdl_mag_data_ready_get(&dev_ctx, &reg);

数据OUTX_L_REG(68h)-OUTZ_H_REG(6Dh)获取。

在这里插入图片描述

      /* Read magnetic field data */memset(data_raw_magnetic, 0x00, 3 * sizeof(int16_t));lis2mdl_magnetic_raw_get(&dev_ctx, data_raw_magnetic);magnetic_mG[0] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[0]);magnetic_mG[1] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[1]);magnetic_mG[2] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[2]);

主程序

#include "hal_data.h"#include <stdio.h>
#include "lis2mdl_reg.h"fsp_err_t err = FSP_SUCCESS;
volatile bool uart_send_complete_flag = false;
void user_uart_callback (uart_callback_args_t * p_args)
{if(p_args->event == UART_EVENT_TX_COMPLETE){uart_send_complete_flag = true;}
}/* Callback function */
i2c_master_event_t i2c_event = I2C_MASTER_EVENT_ABORTED;
uint32_t  timeout_ms = 100000;
void sci_i2c_master_callback(i2c_master_callback_args_t *p_args)
{i2c_event = I2C_MASTER_EVENT_ABORTED;if (NULL != p_args){/* capture callback event for validating the i2c transfer event*/i2c_event = p_args->event;}
}#ifdef __GNUC__                                 //串口重定向#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endifPUTCHAR_PROTOTYPE
{err = R_SCI_UART_Write(&g_uart9_ctrl, (uint8_t *)&ch, 1);if(FSP_SUCCESS != err) __BKPT();while(uart_send_complete_flag == false){}uart_send_complete_flag = false;return ch;
}int _write(int fd,char *pBuffer,int size)
{for(int i=0;i<size;i++){__io_putchar(*pBuffer++);}return size;
}FSP_CPP_HEADER
void R_BSP_WarmStart(bsp_warm_start_event_t event);
FSP_CPP_FOOTER#define SENSOR_BUS g_i2c_master0_ctrl/* Private macro -------------------------------------------------------------*/
#define    BOOT_TIME        20 //ms/* Private variables ---------------------------------------------------------*/
static int16_t data_raw_magnetic[3];
static int16_t data_raw_temperature;
static float magnetic_mG[3];
static float temperature_degC;
static uint8_t whoamI, rst;
static uint8_t tx_buffer[1000];/* Extern variables ----------------------------------------------------------*//* Private functions ---------------------------------------------------------*/
/**   WARNING:*   Functions declare in this section are defined at the end of this file*   and are strictly related to the hardware platform used.**/
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp,uint16_t len);
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp,uint16_t len);
static void tx_com(uint8_t *tx_buffer, uint16_t len);
static void platform_delay(uint32_t ms);
static void platform_init(void);/*******************************************************************************************************************//*** main() is generated by the RA Configuration editor and is used to generate threads if an RTOS is used.  This function* is called by main() when no RTOS is used.**********************************************************************************************************************/
void hal_entry(void)
{/* TODO: add your own code here *//* Open the transfer instance with initial configuration. */err = R_SCI_UART_Open(&g_uart9_ctrl, &g_uart9_cfg);assert(FSP_SUCCESS == err);printf("hello world!\n");R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_00_PIN_14, BSP_IO_LEVEL_HIGH);/* Initialize the I2C module */err = R_IIC_MASTER_Open(&g_i2c_master0_ctrl, &g_i2c_master0_cfg);/* Handle any errors. This function should be defined by the user. */assert(FSP_SUCCESS == err);/* Initialize mems driver interface */stmdev_ctx_t dev_ctx;dev_ctx.write_reg = platform_write;dev_ctx.read_reg = platform_read;dev_ctx.handle = &SENSOR_BUS;/* Wait sensor boot time */platform_delay(BOOT_TIME);/* Check device ID */lis2mdl_device_id_get(&dev_ctx, &whoamI);printf("LIS2MDL_ID=0x%x,whoamI=0x%x\n",LIS2MDL_ID,whoamI);if (whoamI != LIS2MDL_ID)while (1) {/* manage here device not found */}/* Restore default configuration */lis2mdl_reset_set(&dev_ctx, PROPERTY_ENABLE);do {lis2mdl_reset_get(&dev_ctx, &rst);} while (rst);/* Enable Block Data Update */lis2mdl_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);/* Set Output Data Rate */lis2mdl_data_rate_set(&dev_ctx, LIS2MDL_ODR_10Hz);/* Set / Reset sensor mode */lis2mdl_set_rst_mode_set(&dev_ctx, LIS2MDL_SENS_OFF_CANC_EVERY_ODR);/* Enable temperature compensation */lis2mdl_offset_temp_comp_set(&dev_ctx, PROPERTY_ENABLE);/* Set device in continuous mode */lis2mdl_operating_mode_set(&dev_ctx, LIS2MDL_CONTINUOUS_MODE);while (1){uint8_t reg;/* Read output only if new value is available */lis2mdl_mag_data_ready_get(&dev_ctx, &reg);if (reg) {/* Read magnetic field data */memset(data_raw_magnetic, 0x00, 3 * sizeof(int16_t));lis2mdl_magnetic_raw_get(&dev_ctx, data_raw_magnetic);magnetic_mG[0] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[0]);magnetic_mG[1] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[1]);magnetic_mG[2] = lis2mdl_from_lsb_to_mgauss(data_raw_magnetic[2]);printf("Magnetic field [mG]:%4.2f\t%4.2f\t%4.2f\r\n",magnetic_mG[0], magnetic_mG[1], magnetic_mG[2]);/* Read temperature data */memset(&data_raw_temperature, 0x00, sizeof(int16_t));lis2mdl_temperature_raw_get(&dev_ctx, &data_raw_temperature);temperature_degC = lis2mdl_from_lsb_to_celsius(data_raw_temperature);printf("Temperature [degC]:%6.2f\r\n",temperature_degC);}R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);}#if BSP_TZ_SECURE_BUILD/* Enter non-secure code */R_BSP_NonSecureEnter();
#endif
}

演示

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/609809.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

根据MySql的表名,自动生成实体类,模仿ORM框架

ORM框架可以根据数据库的表自动生成实体类&#xff0c;以及相应CRUD操作 本文是一个自动生成实体类的工具&#xff0c;用于生成Mysql表对应的实体类。 新建Winform窗体应用程序AutoGenerateForm&#xff0c;框架(.net framework 4.5)&#xff0c; 添加对System.Configuration的…

高效构建Java应用:Maven入门和进阶(三)

高效构建Java应用&#xff1a;Maven入门和进阶&#xff08;三&#xff09; 三. Maven的核心功能和构建管理3.1 依赖管理和配置3.2 依赖传递和冲突3.3 依赖导入失败场景和解决方案3.4 扩展构建管理和插件配置 三. Maven的核心功能和构建管理 3.1 依赖管理和配置 Maven 依赖管理…

CentOS安装Docker(超详细)

CentOS安装Docker 1 知识小课堂2 CentOS安装Docker2.1 1.1.卸载&#xff08;可选&#xff09;1.2.安装docker1.3.启动docker1.4.配置镜像加速 3 CentOS安装DockerCompose3.1.下载3.2.修改文件权限3.3.Base自动补全命令&#xff1a; 4 Docker镜像仓库4.1.简化版镜像仓库4.2.带有…

数据分析求职-知识脑图

今天和大家聊聊数据分析求职常见面试题&#xff0c;这是这个系列的第一篇文章&#xff0c;但是我不想开始就直接罗列题目&#xff0c;因为这样的文章实在太多了&#xff0c;同学们的兴趣程度肯定一般。所以&#xff0c;我想先和大家聊聊在准备面试题时候通常遇到的困扰&#xf…

GFP-CERTIFIED®FLUOFORTE®钙离子检测试剂盒

Enzo Life Sciences的GFP-CERTIFIED FLUOFORTE Calcium assay kit提供了一种荧光分析方法&#xff0c;用于检测广泛生物靶标的细胞内钙动员情况。相对于其他商业化的染料&#xff0c;GFP-CERTIFIED FLUOFORTE染料是最亮和最灵敏的荧光钙指示剂。该试剂盒为贴壁和非贴壁细胞系提…

生物信息学中的可重复性研究

科学就其本质而言&#xff0c;是累积渐进的。无论你是使用基于网络的还是基于命令行的工具&#xff0c;在进行研究时都应保证该研究可被其他研究人员重复。这有利于你的工作的累积与进展。在生物信息学领域&#xff0c;这意味着如下内容。 工作流应该有据可查。这可能包括在电脑…

linux 压力测试 AB ApacheBench

ab的简介 ab是apachebench命令的缩写。 ab是apache自带的压力测试工具。ab非常实用&#xff0c;它不仅可以对apache服务器进行网站访问压力测试&#xff0c;也可以对或其它类型的服务器进行压力测试。比如nginx、tomcat、IIS等 ab的原理 ab的原理&#xff1a;ab命令会创建多…

ros架构

ROS&#xff08;Robot Operating System&#xff09;是一个灵活的、分布式的系统架构&#xff0c;用于构建机器人软件。它由一系列工具、库和约定组成&#xff0c;提供了一套通用的功能和通信机制&#xff0c;以支持机器人系统的开发、部署和运行。 ROS架构主要包括以下几个核心…

C++面试宝典第17题:找规律填数

题目 仔细观察下面的数字序列,找到规律,并填写空白处的数字。 (1)1, 2, 4, 7, 11, 16, __ (2)-1, 2, 7, 28, __, 126 (3)6, 10, 18, 32, 57, __ (4)19, 6, 1, 2, 11, __ (5)2, 3, 5, 7, 11, __ (6)1, 8, 9, 4, __, 1/6 (7)1, 2, 3, 7, 16, __, 321 (8)1, 2, …

linux异常情况,排查处理中

登录客户环境后&#xff0c;发现一个奇怪情况如下图&#xff0c;之前也遇到过&#xff0c;直接fuser -ck /backup操作的话&#xff0c;主机将会重启&#xff0c;因数据库运行中&#xff0c;等待停机维护时间&#xff0c;同时也在想办法不重启的情况下解决该问题 [rootdb ~]# f…

git撤销提交到本地的commit

有些时候&#xff0c;当我们提交代码到本地后&#xff0c;突然发现因为某些原因需要撤销提交本地的代码。 就比如我&#xff0c;因为代码写错了分支&#xff0c;已经提交到本地了&#xff0c;而我需要取消&#xff0c;并且还要把代码搞得另外的分支上。 提交前&#xff1a; …

SpiderFlow爬虫平台 前台RCE漏洞复现(CVE-2024-0195)

0x01 产品简介 SpiderFlow是新一代爬虫平台,以图形化方式定义爬虫流程,以流程图的方式定义爬虫,不写代码即可完成爬虫,是一个高度灵活可配置的爬虫平台。 0x02 漏洞概述 SpiderFlow爬虫平台src/main/java/org/spiderflow/controller/FunctionController.java文件的Functi…

【elfboard linux开发板】11. 版本管理和修改设备树流程(点亮LED)

1. 版本管理 1.1 初始化git仓库 git init 生成一个.git 目录 git config --global user.name 用户名 git config --global user.email 邮箱 1.2 查看.gitignore vim .gitignore 1.3 添加删除到缓存区 git status 查看状态 git add 文件名 git rm 文件名 1.4 提交当前记录 …

【AI视野·今日Robot 机器人论文速览 第七十期】Thu, 4 Jan 2024

AI视野今日CS.Robotics 机器人学论文速览 Thu, 4 Jan 2024 Totally 17 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Robotics Papers Many-Objective-Optimized Semi-Automated Robotic Disassembly Sequences Authors Takuya Kiyokawa, Kensuke Harada, Weiwei …

canvas绘制路径之 beginPath() 和 closePath()

查看专栏目录 canvas示例教程100专栏&#xff0c;提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重…

《Shader开发实战》-笔记

一、初识游戏图形 1、什么是渲染&#xff1f; 渲染实际上就是创建图像的过程&#xff0c;在渲染过程中创建的图像被称为渲染或者帧&#xff0c;该图像&#xff08;帧&#xff09;以每秒多次在计算机屏幕上进行呈现&#xff0c;即帧率。 负责渲染图像&#xff08;帧&#xff09…

【Redis】非关系型数据库之Redis的主从复制、哨兵和集群高可用

目录 一、主从复制、哨兵、集群的区别 二、主从复制 2.1主从复制的作用 2.2主从复制的原理 2.3主从复制的实操 步骤一&#xff1a;环境准备 步骤二&#xff1a;安装Redis以及配置文件修改 Redis的主从配置文件都一样 步骤四&#xff1a;验证主从复制 三、哨兵 3.1哨兵…

linux(ubuntu)中drontab定时器命令详解

linux&#xff08;ubuntu&#xff09;中drontab定时器命令详解 crontab 是一个用于创建、编辑和管理用户的定时任务的命令&#xff0c;它可以让用户在指定的时间自动执行指定的命令或脚本。 基本语法 -e&#xff1a;编辑用户的 crontab 文件&#xff1b;-l&#xff1a;列出用…

4.MapReduce 序列化

目录 概述序列化序列化反序例化java自带的两种Serializable非Serializable hadoop序例化实践 分片/InputFormat & InputSplit日志 结束 概述 序列化是分布式计算中很重要的一环境&#xff0c;好的序列化方式&#xff0c;可以大大减少分布式计算中&#xff0c;网络传输的数…

Docker实战09|使用AUFS包装busybox

前几篇文章中&#xff0c;重点讲解了如何实现构建容器&#xff0c;需要回顾的小伙伴可以看以下文章&#xff1a; 《Docker实战06&#xff5c;深入剖析Docker Run命令》《Docker实战07&#xff5c;Docker增加容器资源限制》《Docker实战08&#xff5c;Docker管道及环境变量识别…