【Redis】非关系型数据库之Redis的主从复制、哨兵和集群高可用

目录

一、主从复制、哨兵、集群的区别

二、主从复制

2.1主从复制的作用

2.2主从复制的原理

2.3主从复制的实操

步骤一:环境准备

步骤二:安装Redis以及配置文件修改

Redis的主从配置文件都一样

步骤四:验证主从复制

三、哨兵

3.1哨兵的原理和功能

3.2哨兵模式的作用

3.3哨兵的原理

3.4哨兵的实操

步骤一:完成主从复制(接着上面主从复制继续)

步骤二:完成哨兵节点的配置文件修改

步骤三:完成故障切换时,vip漂移脚本

步骤四:重新启动哨兵

步骤五:模拟故障切换,验证自动切换以及vip漂移 ​编辑

四、集群

4.1集群模式的特点

4.2集群模式的作用

4.3集群模式的数据分片

4.4集群模式的原理

4.5集群模式的实操

4.6集群模式的扩容


一、主从复制、哨兵、集群的区别

  • 主从复制:

主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复(手动恢复)

缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

  • 哨兵:

在主从复制的基础上,哨兵实现了自动化的故障恢复。

缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作(脚本)

  • 集群:

通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

但是,成本比较高,通常至少三主三从,六台起步,成本比较高!!

二、主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

2.1主从复制的作用

  • 数据备份

主从复制实现了数据的热备份,是持久化之外的一种数据备份方式。

  • 故障恢复

当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

  • 负载均衡

在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量

  • 高可用基础

除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础

2.2主从复制的原理

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

1、从节点给主节点发送sync命令,主节点则通过bgsave命令生成RDB快照文件,然后将其文件传给从节点,之后的写操作都记录在缓冲区;
2、从节点收到快照文件后执行保存到数据集中,然后再次给主发送psync命令,获取缓冲区的数据;
3、主节点发送缓冲区的写操作,从节点执行同步到数据集中,此时完成主从数据一致;
4、后续从节点会持续监测主,主节点也会定时给从节点发送写操作,从节点同步执行,实现主从数据一致;注意:从节点首次同步以及宕机恢复都需要执行一次全量数据加载,即全量备份

2.3主从复制的实操

步骤一:环境准备

//环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048sysctl -p

步骤二:安装Redis以及配置文件修改

//安装redis
yum install -y gcc gcc-c++ maketar zxvf /opt/redis-7.0.13.tar.gz -C /opt/
cd /opt/redis-7.0.13
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}cp /opt/redis-7.0.13/redis.conf /usr/local/redis/conf/useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin		#增加一行source /etc/profile//定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true[Install]
WantedBy=multi-user.target

 

 

Redis的主从配置文件都一样

-----修改 Redis 配置文件(Slave节点操作)-----
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.80.10 6379					#528行,指定要同步的Master节点IP和端口
#masterauth abc123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass

步骤四:验证主从复制

方法一:通过日志来查看

方法二:在主上操作,验证读写分离与数据备份 

 

三、哨兵

3.1哨兵的原理和功能

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3.2哨兵模式的作用

  • 监控:哨兵会不断地检查主节点和从节点、还有哨兵节点是否运作正常。
  • 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
  • 通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,
哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。

3.3哨兵的原理

#故障转移机制:
1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点,写vip会漂移到新的master;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。


#主节点的选举:
1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大也就是复制最完整的从节点。


哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3.4哨兵的实操

步骤一:完成主从复制(接着上面主从复制继续)

步骤二:完成哨兵节点的配置文件修改

-----修改 Redis 哨兵模式的配置文件(所有节点操作)-----
cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.confvim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.80.10 6379 2		#73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

 

步骤三:完成故障切换时,vip漂移脚本

脚本文件需要在所有数据节点上有

255 sentinel client-reconfig-script mymaster /usr/local/redis/conf/failover.sh

#!/bin/bash
newmaster=$6
oldmaster="$(ifconfig ens33|awk 'NR==2{print $2}')"
vip="192.168.20.100"if [ $newmaster == $oldmaster ]
thenifconfig ens33:1 $vipexit 0
elseifconfig ens33:1 downexit 0
fiexit 1

步骤四:重新启动哨兵

步骤五:模拟故障切换,验证自动切换以及vip漂移 

哨兵模式下两种查询主从的方式

[root@localhost ~]#redis-cli -a abc123 -p 26379 info sentinel[root@localhost ~]#redis-cli -a abc123 -p 6379 info replication

哨兵日志查看

四、集群

4.1集群模式的特点

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

4.2集群模式的作用

(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务

4.3集群模式的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

4.4集群模式的原理

Redis集群的工作原理:
1、集群有多组节点,每组节点负责一部分哈希槽。
2、读写数据时,先针对key根据crc16的算法得出一个结果,然后把结果对 16384 取余。通过这个值去找到对应的哈希槽的节点,进行数据读写。
3、集群每组节点内做主从复制,当主节点宕机的时候,就会启用从节点。主节点负责读写请求和集群信息的维护;从节点负责主节点数据和状态信息的复制。

集群功能:
既可以实现高可用,又支持读写负载均衡,且可以横向扩容,更灵活。缺点成本高!

4.5集群模式的实操

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done#开启群集功能:
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置#启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conffor d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
doneps -ef | grep redis#启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1

 

 

 结果验证

4.6集群模式的扩容

已有集群为6个节点127.0.0.1:6001 - 127.0.0.1:6006,3组主从节点。现要增加第4组主从节点127.0.0.1:6007,127.0.0.1:60081.创建一个新的主节点127.0.0.1:6007。命令里需要指定一个已有节点以便于获取集群信息,本例是指定的127.0.0.1:6001
redis-cli -p 6001 --cluster add-node 127.0.0.1:6007 127.0.0.1:6001
或
redis-cli -p 6001
cluster meet 127.0.0.1 6007
cluster meet 127.0.0.1 60082.将127.0.0.1:6008创建为127.0.0.1:6007的从节点。命令里需要指定一个已有节点以便于获取集群信息和主节点的node ID
redis-cli -p 6001 --cluster add-node 127.0.0.1:6008 127.0.0.1:6001 --cluster-slave --cluster-master-id e44678abed249e22482559136bf45280fd3ac281
或
redis-cli -p 6008
cluster replicate e44678abed249e22482559136bf45280fd3ac2813.新加入的主节点是没有槽数的,只有初始化集群的时候,才会根据主的数据分配好,如新增的主节点,需要手动分配
redis-cli -p 6007 --cluster reshard 127.0.0.1:6001 --cluster-from e1a033e07f0064e6400825b4ddbcd6680c032d10 --cluster-to e44678abed249e22482559136bf45280fd3ac281 --cluster-slots 1000 --cluster-yes
或
redis-cli -p 6007 --cluster reshard 127.0.0.1:6001
How many slots do you want to move (from 1 to 16384)? 1000                    #指定转移槽的数量
What is the receiving node ID? e44678abed249e22482559136bf45280fd3ac281       #指定接收槽数量的主节点node ID
Please enter all the source node IDs.
Type 'all' to use all the nodes as source nodes for the hash slots.
Type 'done' once you entered all the source nodes IDs.
Source node #1: e1a033e07f0064e6400825b4ddbcd6680c032d10           #指定分配的主节点node ID
Source node #2: done                                               #输入完毕,开始转移4.查看集群状态
redis-cli -p 6001 cluster nodes

 

##查看集群信息
redis-cli -p 6007 cluster nodes  
redis-cli -p 6007 cluster slots  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/609787.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux(ubuntu)中drontab定时器命令详解

linux(ubuntu)中drontab定时器命令详解 crontab 是一个用于创建、编辑和管理用户的定时任务的命令,它可以让用户在指定的时间自动执行指定的命令或脚本。 基本语法 -e:编辑用户的 crontab 文件;-l:列出用…

4.MapReduce 序列化

目录 概述序列化序列化反序例化java自带的两种Serializable非Serializable hadoop序例化实践 分片/InputFormat & InputSplit日志 结束 概述 序列化是分布式计算中很重要的一环境,好的序列化方式,可以大大减少分布式计算中,网络传输的数…

Docker实战09|使用AUFS包装busybox

前几篇文章中,重点讲解了如何实现构建容器,需要回顾的小伙伴可以看以下文章: 《Docker实战06|深入剖析Docker Run命令》《Docker实战07|Docker增加容器资源限制》《Docker实战08|Docker管道及环境变量识别…

YOLOv8改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)

一、本文介绍 本文给大家带来的改进机制是特征提取网络UniRepLknet,其也是发表于今年12月份的最新特征提取网络,该网络结构的重点在于使用Dilated Reparam Block和大核心指导原则,强调了高效的结构进行通道间通讯和空间聚合,以及使用带扩张的小核心进行重新参数化,该网络…

自动化生产线-采用工业机器人比人工有哪些优势?

工业机器人相对于人工具有一些显著的优势,这些优势使它们在制造和生产领域得到广泛应用。以下是工业机器人相对于人工的一些主要优势: 1、精度和一致性: 机器人可以执行高精度的操作,确保产品的质量和规格一致,而且不容…

CSS渐变透明

文章目录 一、前言1.1、MDN 二、实现2.1、源码2.2、线上源码 三、最后 一、前言 使用场景:在做两个元素的连接处的UI适配时,图片的颜色不能保证一定跟背景颜色或者是主色调保持一致时,会显得比较突兀。 1.1、MDN MDN的文档,点击【…

​如何在iOS手机上查看应用日志

引言 在开发iOS应用过程中,查看应用日志是非常重要的一项工作。通过查看日志,我们可以了解应用程序运行时的状态和错误信息,帮助我们进行调试和排查问题。本文将介绍两种方法来查看iOS手机上的应用日志,并提供相应的操作步骤。 …

基于Github官方教程的快速入门学习

GitHub 是一个用于版本控制和协作的代码托管平台。 它允许您和其他人随时随地协同处理项目。 创建仓库 在任何页面的右上角,使用 下拉菜单选择“新建存储库”。 之后会进入创建仓库的界面,需要我们进行如下操作: 写仓库的名字写对于本仓库…

无失真编码之算术编码的python实现——数字图像处理

原理 无失真编码中的算术编码是一种用于将输入数据进行高效压缩的方法,同时保留了原始数据的完整性。 算术编码的实现过程如下: 数据分段:首先,将要进行编码的数据划分为一个个符号或字符。每个符号可以是文本中的一个字母、一幅…

ubuntu 20.04下 Tesla P100加速卡使用

1.系统环境:系统ubuntu 20.04, python 3.8 2.查看cuDNN/CUDA与tensorflow的版本关系如下: Build from source | TensorFlow 从上图可以看出,python3.8 对应的tensorflow/cuDNN/CUDA版本。 3.安装tensorflow #pip3 install tensorflow 新版…

hadoop自动获取时间

1、自动获取前15分钟 substr(from_unixtime(unix_timestamp(concat(substr(20240107100000,1,4),-,substr(20240107100000,5,2),-,substr(20240107100000,7,2), ,substr(20240107100000,9,2),:,substr(20240107100000,11,2),:,00))-15*60,yyyyMMddHHmmss),1) unix_timestam…

第一次面试总结 - 迈瑞医疗 - 软件测试

🧸欢迎来到dream_ready的博客,📜相信您对专栏 “本人真实面经” 很感兴趣o (ˉ▽ˉ;) 专栏 —— 本人真实面经,更多真实面试经验,中大厂面试总结等您挖掘 注:此次面经全靠小嘴八八,没…

腾讯云最新优惠活动入口整理汇总

随着云计算技术的快速发展,腾讯云作为国内领先的云服务提供商,一直致力于为用户提供高效、稳定、安全的云服务。为了回馈广大用户的支持,腾讯云经常推出各种优惠活动。本文将对腾讯云最新的优惠活动入口进行整理和汇总,帮助用户更…

【CV】计算两个向量的夹角,并使用 OpenCV 可视化弧线

背景 基于人体/动物,骨骼点数据,计算关节角度 1. 原理 计算两个向量的夹角,我们已三个点为例,BA 向量和BC向量,求 B 的角度。若为四个点,延长交叉即可。 2. 效果 效果图如下 3. 核心代码 def comput…

【服务器数据恢复】FreeNAS+ESXi数据恢复案例

服务器数据恢复环境: 一台服务器,虚拟化系统为esxi,上层使用iSCSI的方式实现FC SAN功能,iSCSI通过FreeNAS构建。 FreeNAS采用了UFS2文件系统,esxi虚拟化系统里有3台虚拟机:其中一台虚拟机安装FreeBSD系统&a…

redis的高可用(主从复制、哨兵、群集)

redis的高可用(主从复制、哨兵、群集) 主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷&…

【python】爬取豆瓣电影排行榜Top250存储到Excel文件中【附源码】

英杰社区https://bbs.csdn.net/topics/617804998 一、背景 近年来,Python在数据爬取和处理方面的应用越来越广泛。本文将介绍一个基于Python的爬虫程 序,用于抓取豆瓣电影Top250的相关信息,并将其保存为Excel文件。 程序包含以下几个部…

[游戏开发] 两向量夹角计算(0-360度)

上图是Unity左手坐标系,红轴是右,蓝轴是前,绿轴是上 测试目标是黑(3.54,0,4)、黄(-3.85,0,4.8)、灰(0.46,0,-2.6)三个向量,且三个向量都再XZ平面上,Y的值为0 以黑色为起始轴,和其他两周做角度计算 计算角…

微信小程序如何自定义导航栏,怎么确定导航栏及状态栏的高度?导航栏被刘海、信号图标给覆盖了怎么办?

声明:本文为了演示效果,颜色采用的比较显眼,可根据实际情况修改颜色 问题描述 当我们在JSON中将navigationStyle设置成custom后,当前页面的顶部导航栏就需要我们制作了,但出现了一下几个问题: 导航栏的高…

【Scala】——流程控制

1 if-else 分支控制 让程序有选择的的执行,分支控制有三种:单分支、双分支、多分支 1.1单分支 if (条件表达式) {执行代码块 }1.2 双分支 if (条件表达式) {执行代码块 1 } else {执行代码块 2 }1.3 多分支 if (条件表达式1) {执行代码块 1 } else …