[redis] redis主从复制,哨兵模式和集群

一、redis的高可用 

1.1 redis高可用的概念

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。

高可用的计算公式是1-(宕机时间)/(宕机时间+运行时间)有点类似与网络传输的参数误码率,我们用9的个数表示可用性:

2个9:99%,一年内宕机时长:1%×365天=3.6524天=87.6h

4个9:99.99%,一年内宕机时长:0.01%×365天=52.56min

5个9:99.999%,一年内宕机时长:0.001%*365天=5.265min

11个9:几乎一年宕机时间只有几秒钟

1.2 Redis的高可用技术

在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和cluster集群,下面分别说明它们的作用,以及解决了什么样的问题。

  • 持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。

  • 主从复制: 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份(和同步),以及对于读操作的负载均衡和简单的故障恢复。

    • 缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
  • 哨兵: 在主从复制的基础上,哨兵实现了自动化的故障恢复。(主挂了,找一个从成为新的主,哨兵节点进行监控)

    • 缺陷:写操作无法负载均衡;存储能力受到单机的限制。
  • Cluster集群: 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。(6台起步,成双成对,3主3从)

二、Redis 主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

2.1 主从复制的作用

  • 数据冗余: 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
  • 故障恢复: 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
  • 负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
  • 高可用基石: 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.2 主从复制流程

1)若启动一个slave机器进程,则它会向Master机器发送一个sync command命令,请求同步连接。

(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中.

(3)后台进程完成缓存操作之后,Master机器就会向slave机器发送数据文件,slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给slave端机器。若slave出现故障导致宕机,则恢复正常后会自动重新连接。

(4)Master机器收到slave端机器的连接后,将其完整的数据文件发送给slave端机器,如果Mater同时收到多个slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的slave端机器,确保所有的slave端机器都正常。

2.3 三台节点安装 Redis

//环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048sysctl -p//安装redis
yum install -y gcc gcc-c++ make
cd /opt
tar zxvf /opt/redis-7.0.13.tar.gz
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin		#增加一行source /etc/profile//定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true[Install]
WantedBy=multi-user.target

2.4 修改 Redis 配置文件(Master节点操作) 

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOFsystemctl restart redis-server.service

2.5 修改 Redis 配置文件(Slave节点操作) 

vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.136.190 6379					#528行,指定要同步的Master节点IP和端口
#masterauth abc123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepasssystemctl restart redis-server.service

2.6 验证主从效果 

在主插入数据
redis-cli info replication

从节点验证

 三、Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

 哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

 哨兵模式的组成:

哨兵节点: 哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。

数据节点: 主节点和从节点都是数据节点。

哨兵模式的作用 

  • 监控: 哨兵会不断地检查主节点和从节点是否运作正常。
  • 自动故障转移: 当主节点不能正常工作时,哨兵会开始自动故障转移操,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。
  • 通知(提醒): 哨兵可以将故障转移的结果发送给客户端。

此外:哨兵节点也可以是单独独立在其他的主机上,并不需要一定安装redis主从复制的节点服务器上 

3.1 故障转移机制

1、由哨兵节点定期监控发现主节点是否出现了故障

每个哨兵节点每隔1秒会问主节点、从节点及其它哨兵节点发送一次ping命令做一次心检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2、当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3、由leader哨兵节点执行故障转移,过程如下:

  • 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
  • 若原主节点恢复也变成从节点,并指向新的主节点;
  • 通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作

3.2 哨兵模式中主节点的选拔 

1.过滤掉不健康的(己下线的),没有回复哨兵ping响应的从节点。

2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)

3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式。

3.3 修改 Redis 哨兵模式的配置文件(所有节点操作) 

cp /opt/redis-7.0.13/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.confvim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		       #20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.136.190 6379 2		#73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)

3.4 设置VIP地址

ifconfig 

 3.5 启动哨兵模式

先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &

 主节点

从节点 

 

3.6 查看哨兵信息 

redis-cli -p 26379 info Sentinel

 3.7 故障模拟

#查看redis-server进程号:
ps aux |grep redisredis      7953  0.2  0.4 187580  8132 ?        Ssl  04:13   1:41 /usr/local/redis/bin/redis-server 127.0.0.1:6379
root      17573  0.1  0.4 163132  8196 ?        Ssl  16:03   0:00 redis-sentinel *:26379 [sentinel]
root      17587  0.0  0.0 112676   980 pts/1    S+   16:03   0:00 grep --color=auto redis#杀死 Master 节点上redis-server的进程号
kill -9 7953			#Master节点上redis-server的进程号

 3.8 验证结果

tail -f  /usr/local/redis/log/redis-sentinel.logredis-cli -p 26379 INFO Sentinel

 

 四、Redis 群集模式 

集群,即Redis Cluster,是Redis3.0开始引入的分布式存储方案。

集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

4.1 集群的作用

(1)数据分区: 数据分区(或称数据分片)是集群最核心的功能。

  • 集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
  • Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用: 集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

4.2 Redis集群的数据分片

Redis集群引入了哈希槽的概念。

Redis集群有16384个哈希槽(编号0-16383)。

集群的每个节点负责一部分哈希槽。

每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。

 4.3 搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}for i in {1..6}
do
cp /opt/redis-7.0.13/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.13/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done
(1)开启群集功能
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置

(2)其余五个配置
for i in {6002..6006}; do \cp -f redis6001/redis.conf redis$i; donefor i in {6002..6006}; do sed -i "s/6001/$i/p" redis$i/redis.conf ; done

(3)启动redis节点 
for i in {6001..6006}; do cd /usr/local/redis/redis-cluster/redis$i; ./redis-server ./redis.conf; done
 (4)启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。
 (5)测试群集
redis-cli -p 6001 -c					#加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots			#查看节点的哈希槽编号范围

cluster keyslot name					#查看name键的槽编号

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/608527.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

subversion httpd

通过http访问模式部署SVN的操作步骤如下: 步骤一:安装SVN 步骤二:安装Apache 步骤三:安装mod_dav_svn 步骤四:配置SVN 步骤五:配置Apache 步骤六:浏览器测试访问 步骤一:安装SVN 1.…

Linux网络配置概述

目录 一.查看网络配置 1.ifconfig 2.ip a 3.hostname 4.route 5.netstat和ss (1)netstat (2)ss (3)区别 6.ping 7.traceroute 8.nslookup 9.dig 二.网卡配置 三.域名解析配置文件 1.文件所…

GEE python登录重大更新—— ee.Initialize()初始验证过程更新

最近GEE python进行了更新,因此原始的登录代码将无法使用,所以这里我们看一下通常会报出的错误,这里需要我们将我们运行的projection具体的名称写入进去,也就是GEE中你再JavaScript界面中运行的项目名称,相较与之前我们需要进行验证码的copy,这里直接可以通过项目的写入来…

Linux限制用户可用硬盘空间

为了防止某个用户占用大量资源导致其他用户无法正常使用,一般会对单个用户可占用资源进行限制。就磁盘限额,XFS文件系统原生支持目录级别的限制。ext文件系统不支持目录限制,曲线方式是限制用户的总占用空间。 本文介绍使用quota程序限制用户…

模型评估:评估指标的局限性

“没有测量,就没有科学。”这是科学家门捷列夫的名言。在计算机科学特别是机器学习领域中,对模型的评估同样至关重要。只有选择与问题相匹配的评估方法,才能快速地发现模型选择或训练过程中出现的问题,迭代地对模型进行优化。模型…

【华为】IPsec VPN 实验配置(动态地址接入)

【华为】IPsec VPN 实验配置(动态地址接入) 注意实验需求配置思路配置命令拓扑R1基础配置配置第一阶段 IKE SA配置第二阶段 IPsec SA ISP_R2基础配置 R3基础配置配置第一阶段 IKE SA配置第二阶段 IPsec SA PCPC1PC2 检查建立成功查看命令清除IKE / IPsec…

Acrel-EIoT能源物联网云平台助力电力物联网数据服务 ——安科瑞 顾烊宇

摘要:Acrel-EIOT能源物联网云平台是一个结合在线销售的互联网商业模式,为分布广泛的互联网用户提供PAAS服务的平台。安科瑞物联网产品安装完成后,用户可以通过手机扫描代码轻松实现产品访问平台,无需注意调试和平台运行过程&#…

【深度学习:Self-supervised learning (SSL) 】自我监督学习解释

【深度学习:SSL Self-supervised learning 】自我监督学习解释 什么是自我监督学习?比较自我监督学习与监督学习和无监督学习 为什么计算机视觉模型需要自监督学习?自我监督学习的好处自监督学习的局限性 自我监督学习如何运作?对…

使用Redhat操作系统下载MySQL

一、本地下载安装 方法一 ①在虚拟机火狐浏览器中搜索MySQL官网(选择第一个下载) ②下载完毕使用xshell远程连接解压及安装 [rootlocalhost ~]# cd /Downloads/ [rootlocalhost Downloads]# mkdir /mysql/ [rootlocalhost Downloads]# mv mysql-8.0.3…

HIS医院信息化、数字医学影像、DICOM、PACS源码

PACS系统适合卫生院、民营医院、二甲或以下公立医院的放射科、超声科使用。功能强大且简洁,性能优异,具备MPR(三维重建)、VR(容积重建)、胶片打印功能,能够快速部署。 支持DR、CT、磁共振提供D…

可移动的div

一、实验题目 做一个可移动的div 二、实验代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>*{margin: 0;padding: 0;}div{width: 100px;height: 100px;background-color: rebeccapurple…

【操作系统】BIOS与MBR之间的过渡实践

一&#xff0e;概述 根据以前写的一篇文章&#xff1a;【操作系统】MBR主引导目录结构以及作用&#xff0c;我们了解到BIOS在检测完内存、显卡&#xff0c;把硬盘等一系列外设简单检测之后&#xff0c;下一步将和主引导程序MBR进行交接&#xff0c;将主控权交付给下一位嘉宾&am…

js viewer 图片浏览器

示例1 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title></title></head><script src"js/viewer.min.js"></script><link rel"stylesheet" href"css/viewer.min.css…

计算机网络 - 路由器查表过程模拟 C++(2024)

1.题目描述 参考计算机网络教材 140 页 4.3 节内容&#xff0c;编程模拟路由器查找路由表的过程&#xff0c;用&#xff08;目的地址 掩码 下一跳&#xff09; 的 IP 路由表以及目的地址作为输入&#xff0c;为目的地址查找路由表&#xff0c;找出正确的下一跳并输出结果。 1.…

[C#]C# OpenVINO部署yolov8-pose姿态估计模型

【源码地址】 github地址&#xff1a;https://github.com/ultralytics/ultralytics 【算法介绍】 Yolov8-Pose算法是一种基于深度神经网络的目标检测算法&#xff0c;用于对人体姿势进行准确检测。该算法在Yolov8的基础上引入了姿势估计模块&#xff0c;通过联合检测和姿势…

UE5 C++(十三)— 创建Character,添加增强输入

文章目录 创建Character第三人称模板添加增强输入引用在脚本中实现移动、旋转 创建Character第三人称模板 创建MyCharacter C类 添加增强输入引用 在DEMO.Build.cs 脚本中添加增强输入模块 有个容易出错的点&#xff0c;这里的设置一定要正确 然后添加引用到C头文件中 …

面向设计师的11个必备AI工具

在当今快速发展的设计领域&#xff0c;人工智能&#xff08;AI&#xff09;工具已成为不可或缺的创新催化剂。这些工具专门用于提高效率和创造力&#xff0c;从而重新定义传统的设计方法。AI正在彻底改变设计师的工作方式&#xff0c;从自动处理任务到发掘新的创造力机会&#…

HTAP(Hybrid Transactional/Analytical Processing)系统之统一存储的实时之道

文章目录 HTAP与时俱进LASER中的存储关键知识LSM&#xff08;Log-Structured Merge Tree&#xff09;SkipList&#xff08;跳表&#xff09;CDC&#xff08;Changed Data Capture&#xff09;SST&#xff08;Sorted Sequence Table&#xff09; 特性列组&#xff08;Column Gro…

Arthas,你真是Java程序员的大力丸

您好&#xff0c;我是码农飞哥&#xff08;wei158556&#xff09;&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f4aa;&#x1f3fb; 1. Python基础专栏&#xff0c;基础知识一网打尽&#xff0c;9.9元买不了吃亏&#xff0c;买不了上当。 Python从入门到精…

印章管理详解|契约锁帮助提前预防99%的印章风险

传统实体印章不仅存在私刻私盖、盗用乱用、易伪造等安全隐患&#xff0c;此外&#xff0c;线下面签的方式也不便于异地、非工作时间用印&#xff0c;分公司用印常常两地来回跑。组织的印章到底怎么“管”才能保障安全和使用效率&#xff1f; 一、 印章管理风险有哪些&#xff…