Rust 常用集合(上)

目录

1、使用 Vector 储存列表

1.1 新建 vector

1.2 更新 vector

1.3 读取 vector 的元素

1.4 遍历 vector 中的元素

1.5 使用枚举来储存多种类型

1.6 丢弃 vector 时也会丢弃其所有元素

2、使用字符串储存 UTF-8 编码的文本

2.1 什么是字符串?

2.2 新建字符串

2.3 更新字符串

2.3.1 使用 push_str 和 push 附加字符串

2.3.2 使用 + 运算符或 format! 宏拼接字符串

2.3.3 索引字符串

2.3.4 字符串 slice

2.3.5 遍历字符串的方法

2.3.6 字符串并不简单


Rust 标准库中包含一系列被称为 集合collections)的非常有用的数据结构。大部分其他数据类型都代表一个特定的值,不过集合可以包含多个值。不同于内建的数组和元组类型,这些集合指向的数据是储存在堆上的,这意味着数据的数量不必在编译时就已知,并且还可以随着程序的运行增长或缩小。每种集合都有着不同功能和成本,而根据当前情况选择合适的集合,以下三种是在 Rust 程序中被广泛使用的集合;

  • vector 允许我们一个挨着一个地储存一系列数量可变的值
  • 字符串string)是字符的集合。我们之前见过 String 类型,不过在本章我们将深入了解。
  • 哈希 maphash map)允许我们将值与一个特定的键(key)相关联。这是一个叫做 map 的更通用的数据结构的特定实现。

1、使用 Vector 储存列表

我们要讲到的第一个类型是 Vec<T>,也被称为 vector。vector 允许我们在一个单独的数据结构中储存多于一个的值,它在内存中彼此相邻地排列所有的值。vector 只能储存相同类型的值。

1.1 新建 vector

为了创建一个新的空 vector,可以调用 Vec::new 函数,如下所示:

let v: Vec<i32> = Vec::new();

这里,定义了一个变量v,是vector类型,类型后面使用一对尖括号来表示Vector类型的泛型,在这里指定的是i32类型,所以变量v存储的是一组i32组成的集合。

通常,我们会用初始值来创建一个 Vec<T> 而 Rust 会推断出储存值的类型,所以很少会需要这些类型注解。为了方便 Rust 提供了 vec! 宏,这个宏会根据我们提供的值来创建一个新的 vector。

fn main() {let v = vec![1, 2, 3, 4, 5, 6];println!("{:?}", v.len()) // 6
}

因为我们提供了 i32 类型的初始值,Rust 可以推断出 v 的类型是 Vec<i32>,因此类型声明就不是必须的。

1.2 更新 vector

对于新建一个 vector 并向其增加元素,可以使用 push 方法

fn main() {let mut v = Vec::new();v.push(1);v.push(2);v.push(3);println!("{:?}", v.len()) // 3
}

1.3 读取 vector 的元素

fn main() {let mut v = Vec::new();v.push(1);v.push(2);v.push(3);let first = &v[0];println!("{:?}", first); // 3println!("{:?}", &v[100]); // index out of bounds:println!("{:?}", v.get(1)); // Some(2)
}

这里有几个细节需要注意。我们使用索引值 2 来获取第三个元素,因为索引是从数字 0 开始的。使用 & 和 [] 会得到一个索引位置元素的引用。当使用索引作为参数调用 get 方法时,会得到一个可以用于 match 的 Option<&T>

当我们获取了 vector 的第一个元素的不可变引用并尝试在 vector 末尾增加一个元素的时候,如果尝试在函数的后面引用这个元素是行不通的:

fn main() {let mut v = Vec::new();v.push(1);v.push(2);v.push(3);let first = &v[0];v.push(100); // 报错......println!("{:?}", first); // 3println!("{:?}", &v[100]); // index out of bounds:println!("{:?}", v.get(1)); // Some(2)
}

会抛出如下错误:

所以在 vector 的结尾增加新元素时,在没有足够空间将所有元素依次相邻存放的情况下,可能会要求分配新内存并将老的元素拷贝到新的空间中。这时,第一个元素的引用就指向了被释放的内存。借用规则阻止程序陷入这种状况。

1.4 遍历 vector 中的元素

如果想要依次访问 vector 中的每一个元素,我们可以遍历其所有的元素而无需通过索引一次一个的访问。如下所示:

fn main() {let mut v = Vec::new();v.push(1);v.push(2);v.push(3);for i in &v {println!("{}", i)}
}

我们也可以遍历可变 vector 的每一个元素的可变引用以便能改变它们。如下所示:

fn main() {let mut v = Vec::new();v.push(1);v.push(2);v.push(3);for i in &mut v {*i *= 10;}println!("{:?}", v) // [10, 20, 30]
}

修改可变引用所指向的值,在使用 *= 运算符之前必须使用解引用运算符(*)获取 i 中的值。

1.5 使用枚举来储存多种类型

vector 只能储存相同类型的值。这是很不方便的;绝对会有需要储存一系列不同类型的值的用例。幸运的是,枚举的成员都被定义为相同的枚举类型,所以当需要在 vector 中储存不同类型值时,我们可以定义并使用一个枚举!看一下下面这个示例:

fn main() {#[derive(Debug)]enum Value {Int(i32),Float(f32),Text(String),Valid(bool),}let mut v = Vec::new();v.push(Value::Int(1));v.push(Value::Float(1.1));v.push(Value::Text(String::from("wangwu")));v.push(Value::Valid(true));println!("{:?}", v) // [Int(1), Float(1.1), Text("wangwu"), Valid(true)]
}

Rust 在编译时就必须准确的知道 vector 中类型的原因在于它需要知道储存每个元素到底需要多少内存。第二个好处是可以准确的知道这个 vector 中允许什么类型。如果 Rust 允许 vector 存放任意类型,那么当对 vector 元素执行操作时一个或多个类型的值就有可能会造成错误。

1.6 丢弃 vector 时也会丢弃其所有元素

类似于任何其他的 struct,vector 在其离开作用域时会被释放,如下所示:

{let v = vec![1, 2, 3, 4];// todo
} // 超出作用域,v被丢弃,对应的元素值也会被丢弃

2、使用字符串储存 UTF-8 编码的文本

2.1 什么是字符串?

在开始深入这些方面之前,我们需要讨论一下术语 字符串 的具体意义。Rust 的核心语言中只有一种字符串类型:字符串 slice str,它通常以被借用的形式出现,&str。第四章讲到了 字符串 slices:它们是一些对储存在别处的 UTF-8 编码字符串数据的引用。举例来说,由于字符串字面值被储存在程序的二进制输出中,因此字符串字面值也是字符串 slices。

字符串(String)类型由 Rust 标准库提供,而不是编入核心语言,它是一种可增长、可变、可拥有、UTF-8 编码的字符串类型。当 Rustaceans 提及 Rust 中的 "字符串 "时,他们可能指的是 String 或 string slice &str 类型,而不仅仅是其中一种类型。虽然本节主要讨论 String,但这两种类型在 Rust 的标准库中都有大量使用,而且 String 和 字符串 slices 都是 UTF-8 编码的。

2.2 新建字符串

很多 Vec 可用的操作在 String 中同样可用,事实上 String 被实现为一个带有一些额外保证、限制和功能的字节 vector 的封装。其中一个同样作用于 Vec<T> 和 String 函数的例子是用来新建一个实例的 new 函数,如下所示:

    let mut s = String::new();

上面创建了一个叫做 s 的空的字符串,接着我们可以向其中装载数据。通常字符串会有初始数据,因为我们希望一开始就有这个字符串。为此,可以使用 to_string 方法,它能用于任何实现了 Display trait 的类型,比如字符串字面值。如下所示:

fn main() {let data = "test string";let s = data.to_string();// 该方法也可直接用于字符串字面值:let s = "test string".to_string();println!("{:?}", s) // test string
}

也可以使用 String::from 函数来从字符串字面值创建 String。如下所示:

let data = String::from("test string");

2.3 更新字符串

String 的大小可以增加,其内容也可以改变,就像可以放入更多数据来改变 Vec 的内容一样。另外,可以方便的使用 + 运算符或 format! 宏来拼接 String 值。

2.3.1 使用 push_str 和 push 附加字符串

可以通过 push_str 方法来附加字符串 slice,从而使 String 变长,如下所示:

fn main() {let mut s = String::from("hello ");s.push_str("world");println!("{}", s) // hello world
}

push 方法被定义为获取一个单独的字符作为参数,并附加到 String 中。如下所示:

fn main() {let mut s = String::from("hell");s.push('o');println!("{s}");
}

2.3.2 使用 + 运算符或 format! 宏拼接字符串

通常你会希望将两个已知的字符串合并在一起。一种办法是像这样使用 + 运算符,如下所示:

fn main() {let h = String::from("hello ");let w = String::from("world");let res = h + &w;println!("{res}"); // hello world
}

执行完代码之后,h在相加之后不再有效,+运算符调用时跟函数签名有关,+运算符使用了add函数,这个函数看起来像这样:

    fn add(mut self, other: &str) -> String {self.push_str(other);self}

首先,w 使用了 &,意味着我们使用第二个字符串的 引用 与第一个字符串相加。这是因为 add 函数的 s 参数:只能将 &str 和 String 相加,不能将两个 String 值相加。不过等一下 —— &w的类型是 &String, 而不是 add 第二个参数所指定的 &str。那么为什么还能编译呢?

之所以能够在 add 调用中使用 &w 是因为 &String 可以被 强转coerced)成 &str。当add函数被调用时,Rust 使用了一个被称为 Deref 强制转换deref coercion)的技术,你可以将其理解为它把 &w 变成了 &w[..]。因为 add 没有获取参数的所有权,所以 w 在这个操作后仍然是有效的 String

其次,可以发现签名中 add 获取了 self 的所有权,因为 self 没有 使用 &。这意味着示例 8-18 中的 h 的所有权将被移动到 add 调用中,之后就不再有效。所以虽然 let res = h + &w; 看起来就像它会复制两个字符串并创建一个新的字符串,而实际上这个语句会获取 h 的所有权,附加上从 w 中拷贝的内容,并返回结果的所有权。换句话说,它看起来好像生成了很多拷贝,不过实际上并没有:这个实现比拷贝要更高效。

如果想要级联多个字符串,+ 的行为就显得笨重了:

fn main() {let h = String::from("hello ");let w = String::from("world");let t = String::from(", 123");let res = h + &w + &t;println!("{res}"); // hello world, 123
}

对于更为复杂的字符串链接,我们可以使用 format! 宏:

fn main() {let h = String::from("hello ");let w = String::from("world");let t = String::from(", 123");println!("{h}{w}{t}"); // hello world, 123
}

2.3.3 索引字符串

在很多语言中,通过索引来引用字符串中的单独字符是有效且常见的操作。然而在 Rust 中,如果你尝试使用索引语法访问 String 的一部分,会出现一个错误。

fn main() {let h = String::from("hello ");let res = h[0];
}

我们可以看下字符串的实现。

pub struct String {vec: Vec<u8>,
}

所以在获取索引的时候,并不会返回我们所期望的第一个字母,而在Rust在编译过程就会阻止,并报错。

2.3.4 字符串 slice

字符串索引应该返回的类型是不明确的:字节值、字符、字形簇或者字符串 slice。因此,如果你真的希望使用索引创建字符串 slice 时,Rust 会要求你更明确一些。为了更明确索引并表明你需要一个字符串 slice,相比使用 [] 和单个值的索引,可以使用 [] 和一个 range 来创建含特定字节的字符串 slice:

fn main() {let h = "Здравствуйте";let res = &h[0..4];println!("{res}") // Зд
}

如果获取 &h[0..1] 会发生什么呢?答案是:Rust 在运行时会 panic,就跟访问 vector 中的无效索引时一样:

2.3.5 遍历字符串的方法

操作字符串每一部分的最好的方法是明确表示需要字符还是字节。对于单独的 Unicode 标量值使用 chars 方法。对 “Зд” 调用 chars 方法会将其分开并返回两个 char 类型的值,接着就可以遍历其结果来访问每一个元素了:

fn main() {let str = "Здравствуйте";for i in str.chars() {println!("{i}") // З д р ...}
}

另外 bytes 方法返回每一个原始字节,这可能会适合你的使用场景:

fn main() {let str = "Здравствуйте";for i in str.bytes() {println!("{i}") // 208 151 ...}
}

2.3.6 字符串并不简单

总而言之,字符串还是很复杂的。不同的语言选择了不同的向程序员展示其复杂性的方式。Rust 选择了以准确的方式处理 String 数据作为所有 Rust 程序的默认行为,这意味着程序员们必须更多的思考如何预先处理 UTF-8 数据。这种权衡取舍相比其他语言更多的暴露出了字符串的复杂性,不过也使你在开发周期后期免于处理涉及非 ASCII 字符的错误。

好消息是标准库提供了很多围绕 String 和 &str 构建的功能,来帮助我们正确处理这些复杂场景。请务必查看这些使用方法的文档,例如 contains 来搜索一个字符串,和 replace 将字符串的一部分替换为另一个字符串。

称作 String 的类型是由标准库提供的,而没有写进核心语言部分,它是可增长的、可变的、有所有权的、UTF-8 编码的字符串类型。当 Rustacean 们谈到 Rust 的 “字符串”时,它们通常指的是 String 或字符串 slice &str 类型,而不特指其中某一个。虽然本部分内容大多是关于 String 的,不过这两个类型在 Rust 标准库中都被广泛使用,String 和字符串 slices 都是 UTF-8 编码的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/607281.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

联邦机构如何利用人工智能加速 IT 系统现代化

尽管行业压力巨大&#xff0c;许多公共部门组织仍然需要依赖已有数十年历史的遗留 IT 系统&#xff0c;这些系统可能会增加安全风险和成本&#xff0c;导致人员短缺&#xff0c;并减缓开发团队交付关键任务应用程序的速度。 与此同时&#xff0c;考虑到这些大型系统中内存不安…

设计模式的艺术P1基础—2.3 类之间的关系

设计模式的艺术P1基础—2.3 类之间的关系 在软件系统中&#xff0c;类并不是孤立存在的&#xff0c;类与类之间存在各种关系。对于不同类型的关系&#xff0c;UML提供了不同的表示方式 1&#xff0e;关联关系 关联&#xff08;Association&#xff09;关系是类与类之间最常用…

k8s yaml文件pod的生命周期

Pod是k8s中最小限额资源管理组件&#xff0c;也是最小化运行容器化的应用的资源管理对象。 Pod是一个抽象的概念&#xff0c;可以理解为一个或者多个容器化应用的集合。 在一个pod当中运行一个容器是最常用的方式。 在一个pod当中同时运行多个容器&#xff0c;在一个pod当中…

异常处理:全面覆盖与精细化管理的平衡

异常处理&#xff1a;全面覆盖与精细化管理的平衡 在软件开发中&#xff0c;异常处理是保证系统稳定性和用户体验的重要环节。对于是否应当全面覆盖所有异常并设立兜底机制&#xff0c;业界存在着两种主流思路&#xff1a;全面覆盖原则和精细化处理。如何在这两者间取得平衡&a…

1.框架介绍项目环境配置与项目启动!

目录 1.框架开发方向:2.项目启动与环境搭建 1.框架开发方向: 1.前后端分离项目 2.纯后端项目 3.移动端开发uni-app(ios、Android、H5、微信小程序) 4.内容管理系统2.项目启动与环境搭建 1.安装node.js 下载地址可以用nvm安装 便于运行前端项目https://blog.csdn.net/qq_58647…

webpack的性能优化(一)——分包优化

1.什么是分包&#xff1f;为什么要分包&#xff1f; 默认情况下&#xff0c;Webpack 会将所有代码构建成一个单独的包&#xff0c;这在小型项目通常不会有明显的性能问题&#xff0c;但伴随着项目的推进&#xff0c;包体积逐步增长可能会导致应用的响应耗时越来越长。归根结底这…

led恒流式驱动电源芯片一览表

LED恒流式驱动电源芯片是一种用于驱动LED灯的关键组件。它能够稳定地提供恒定的电流&#xff0c;确保LED灯的亮度和颜色始终保持一致。 LED恒流式驱动电源芯片通常由电源管理单元、恒流输出部分和保护电路组成。电源管理单元负责转换输入电压为恒定的直流电压&#xff0c;并通…

App Crawler

Google官方出了一款App遍历工具App Crawler。 文档&#xff1a;应用抓取工具 | Android 开发者 | Android Developers App Crawler工具是Android Jetpack的一部分&#xff0c;它可自动的运行你的App&#xff0c;不需要编写或维护任何代码。 通过App Crawler运行App&…

数字后端设计实现之自动化useful skew技术(Concurrent Clock Data)

在数字IC后端设计实现过程中&#xff0c;我们一直强调做时钟树综合要把clock skew做到最小。原因是clock skew的存在对整体设计的timing是不利的。 但是具体到某些timing path&#xff0c;可能它的local clock skew对timing是有帮助的&#xff0c;比如如下图所示。 第一级FF到第…

简单易懂的PyTorch激活函数大全详解

目录 torch.nn子模块Non-linear Activations nn.ELU 主要特点与注意事项 使用方法与技巧 示例代码 图示 nn.Hardshrink Hardshrink函数定义 参数 形状 示例代码 图示 nn.Hardsigmoid Hardsigmoid函数定义 参数 形状 示例代码 图示 nn.Hardtanh HardTanh函数…

windows系统升级

问题 windows系统升级 详细问题 笔者手边有台电脑&#xff0c;操作系统版本为windowsXP&#xff0c;现需要升级至windows较新版本 解决方案 1、 内容备份 若C盘有重要数据文件 &#xff0c;对于C盘&#xff08;重要数据文件&#xff09;进行备份 2、下载软件天猫一键重装…

【数据结构】数据结构中应用题大全(完结)

自己在学习过程中总结了DS中几乎所有的应用题&#xff0c;可以用于速通期末考/考研/各种考试。很多方法来源于B站大佬&#xff0c;底层原理本文不做过多介绍&#xff0c;建议自己研究。例题大部分选自紫皮严书。pdf版在主页资源 一、递归时间/空间分析 1.时间复杂度的分析 设…

MySQL之子查询、连接查询(内外)以及分页查询(实操)

文章目录 前言一、SQL脚本二、实操以及实现思路 前言 续上篇博主MySQL之视图&索引&执行计划这篇给大家讲解MySQL之子查询、连接查询(内&外)以及分页查询 一、SQL脚本 /*Navicat Premium Data TransferSource Server : localhostSource Server Type :…

Koodo Reader : 一个开源免费的电子书阅读器

今天在浏览 GitHub 的时候&#xff0c;偶然发现了一个非常有趣的开源项目——Koodo Reader。这个项目是一款开源免费的电子书阅读器&#xff0c;支持多种格式。它具有一些非常独特的功能&#xff0c;深深地吸引了我的注意。在接下来的内容中&#xff0c;我将为大家详细介绍一下…

07、Kafka ------ 消息生产者(演示 发送消息) 和 消息消费者(演示 监听消息)

目录 Kafka --- 消息生产者★ 消息★ 消息的分发机制★ 分发到哪个分区★ 轮询策略&#xff08;round-robin&#xff09;★ 使用命令行工具发送消息演示添加消息 Kafka --- 消息消费者★ 消息消费者命令▲ 监听 【指定主题】 的所有消息:▲ 监听 【指定主题、指定分区】的所有消…

LED电平显示驱动电路图

LB1409九位LED电平显示驱动电路 如图所示为LBl409九位LED电平显示驱动电路。图&#xff08;a&#xff09;是用LB1409做电平显示驱动电路&#xff0c;图&#xff08;b&#xff09;是应用基准电压电平显示驱动电路。LB1409是日本东京互洋电机株式会社生产的产品&#xff0c;与其…

开启Android学习之旅-5-Activity全屏

Android 两种方式设置全屏&#xff1a; 1. 第一行代码中的方法 通过 getWindow().getDecorView()方法拿到当前Activity的DecorView,再调用 setSystemUiVisibility() 方法来改变系统UI的显示&#xff0c;这里传入了 View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN 和 View.SYSTEM_UI_…

上海雏鸟科技无人机灯光秀跨年表演点亮三国五地夜空

2023年12月31日晚&#xff0c;五场别开生面的无人机灯光秀跨年表演在新加坡圣淘沙、印尼雅加达、中国江苏无锡、浙江衢州、陕西西安等五地同步举行。据悉&#xff0c;这5场表演背后均出自上海的一家无人机企业之手——上海雏鸟科技。 在新加坡圣淘沙西乐索海滩&#xff0c;500架…

设计模式的艺术P1基础—2.2 类与类的UML图示

设计模式的艺术P1基础—2.2 类与类的UML图示 在UML 2.0的13种图形中&#xff0c;类图是使用频率最高的两种UML图之一&#xff08;另一种是用于需求建模的用例图&#xff09;&#xff0c;它用于描述系统中所包含的类以及它们之间的相互关系&#xff0c;帮助人们简化对系统的理解…

Avalonia学习(二十一)-自定义界面演示

今天开始继续Avalonia练习。 本节&#xff1a;自定义界面 在网上看见一个博客&#xff0c;根据需要演示一下。 前台代码 <Window xmlns"https://github.com/avaloniaui"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:vm"using:…