自监督深度学习技术

一、定义

自监督学习(SSL)是机器学习的一种范式,用于处理未标记数据以获取有用的表示,以帮助下游学习任务。SSL方法最显著的特点是它们不需要人类标注的标签,这意味着它的训练完全基于由未标记的数据样本组成的数据集。典型的SSL流程包括在第一阶段学习监督信号(自动生成的标签),这些监督信号将用于后续阶段中的某些监督学习任务。因此,SSL可以视为无监督学习和监督学习的中间形式。

自监督学习的核心思想是从输入数据中创建虚拟的监督信号,然后使用这些虚拟标签来训练模型。在训练过程中,模型根据虚拟标签进行优化,以学习数据中的有用特征和模式。这些虚拟标签可以是从原始数据中自动生成的,例如从图像中移除一部分内容并让模型预测缺失的内容,或者从文本中掩盖部分单词并让模型填补缺失的单词。

自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征。 也就是说,自监督学习不需要任何的外部标记数据,这些标签是从输入数据自身中得到的

自监督学习的模式仍然是Pretrain-Fintune的模式,即先在pretext上进行预训练,然后将学习到的参数迁移到下游任务网络中,进行微调得到最终的网络。

二、方法

自监督学习的方法主要可以分为 3 类:

1. 基于上下文(Context based)

基于数据本身的上下文信息,可以构造很多任务,比如在 NLP 领域中Word2vec 主要是利用语句的顺序,例如 CBOW 通过前后的词来预测中间的词,而 Skip-Gram 通过中间的词来预测前后的词。;在图像中,图像拼图、图像修复、图像着色、图像旋转等任务都是典型的作为pretext的例子。

2. 基于时序(Temporal Based)

样本间具有很多约束关系,最能体现时序的数据类型就是视频了。例如,对于视频中的每一帧,其实存在着特征相似的概念,简单来说我们可以认为视频中的相邻帧特征是相似的,而相隔较远的视频帧是不相似的,通过构建这种相似(position)和不相似(negative)的样本来进行自监督约束。或者可以设计一个模型,来判断当前的视频序列是否是正确的顺序。

3. 基于对比(Contrastive Based)

对比约束,它通过学习对两个事物的相似或不相似进行编码来构建表征。通过构建正样本(positive)和负样本(negative),然后度量正负样本的距离来实现自监督学习,即样本和正样本之间的距离远远大于样本和负样本之间的距离,可以使用点积的方式构造距离函数,然后构造一个 softmax 分类器,以正确分类正样本和负样本。

https://zhuanlan.zhihu.com/p/108906502icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/108906502

https://www.cnblogs.com/polly333/p/17791786.htmlicon-default.png?t=N7T8https://www.cnblogs.com/polly333/p/17791786.html自监督学习分类:

三、自监督VIO

  • SelfVIO: Self-supervised deep monocular Visual–Inertial Odometry and depth estimation:GAN网络,位姿估计与深度估计组合进行,开源
  • DeepVIO: Self-supervised Deep Learning of Monocular Visual Inertial Odometry using 3D Geometric Constraints:端到端的单目VIO,从双目中获取监督信息
  • Vision-Aided Absolute Trajectory Estimation Using an Unsupervised Deep Network with Online Error Correction:VIOLearner,在网络训练过程中加入传统模型的引导,开源
  • CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth:通过原始图像和级联稀疏深度图预测稠密的深度图及其不确定度的编码网络+通过对深度信息进行编码得到用于 VIO 优化的深度向量的变分自编码器
  • BoomVIO: bootstrapped monocular visual-inertial odometry with absolute trajectory estimation through unsupervised deep learning
  • Unsupervised monocular visual- inertial odometry network
  • Unsupervised Learning of Depth and Pose Based on Monocular Camera and Inertial Measurement Unit (IMU)
  • Scale-Aware Visual-Inertial Depth Estimation and Odometry Using Monocular Self-Supervised Learning
  • Attention Guided Unsupervised learning of Monocular Visual-inertial Odometry
  • CoVIO: Online Continual Learning for Visual-Inertial Odometry
  • Unsupervised Deep Visual-Inertial Odometry with Online Error Correction for RGB-D Imagery

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/605350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络通信过程的一些基础问题

客户端A在和服务器进行TCP/IP通信时,发送和接收数据使用的是同一个端口吗? 这个问题可以这样来思考:在客户端A与服务器B建立连接时,A需要指定一个端口a向服务器发送数据。当服务器接收到A的报文时,从报文头部解析出A的…

018、通用集合类型

Rust标准库包含了一系列非常有用的被称为集合的数据结构。大部分的数据结构都代表着某个特定的值,但集合却可以包含多个值。 与内置的数组与元组类型不同,这些集合将自己持有的数据存储在了堆上。这意味着数据的大小不需要在编译时确定,并且可…

WEB 3D技术 three.js 顶点交换

本文 我们来说 顶点的转换 其实就是 我们所有顶点的位置发生转变 我们整个物体的位置也会随之转变 这里 我们编写代码如下 import ./style.css import * as THREE from "three"; import { OrbitControls } from "three/examples/jsm/controls/OrbitControls.j…

kettle的基本介绍和使用

1、 kettle概述 1.1 什么是kettle Kettle是一款开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,绿色无需安装,数据抽取高效稳定。 1.2 Kettle核心知识点 1.2.1 Kettle工程存储方式 以XML形式存储以资源库方式存储…

【数据结构】树的遍历

树的遍历 前序遍历 前序遍历是按照根节点->左子树->右子树的顺序进行遍历 图片来源维基百科深度优先遍历(前序遍历): F, B, A, D, C, E, G, I, H. 代码实现 递归 # class TreeNode: # def __init__(self, x): # self.val x # …

Office提示内存或磁盘空间不足

Office提示内存或磁盘空间不足 Office提示内存或磁盘空间不足,可以试试以下方法,不管用不要骂我 打开选项 点击信任中心 在受保护的视图中将以下选项取消勾选后确定,关掉软件重新打开

服务容错-熔断策略之断路器hystrix-go

文章目录 概要一、服务熔断二、断路器模式三、hystrix-go3.1、使用3.2、源码 四、参考 概要 微服务先行者Martin Fowler与James Lewis在文章microservices中指出了微服务的九大特征,其中一个便是容错性设计(Design for failure)。正如文章中提到的,微服…

Python打印Python环境、PyTorch和CUDA版本、GPU数量名称等信息

代码: import torch import platformgpu_num torch.cuda.device_count() torch_version torch.__version__ python_version platform.python_version()print("Python Version: Python %s" % python_version) print("PyTorch Version: %s" %…

Spring之推断构造方法源码

文章目录 一、 简介1. 内容回顾2. Spring推断构造方法 二、 源码分析 一、 简介 1. 内容回顾 前面分析了Spring的Bean的生命周期的源码,然后分析了依赖注入源码,以及依赖注入的过程中循环依赖Spring的解决方案。在介绍Bean的生命周期中,我们…

三维模型的几何坐标纠正应用探讨

三维模型的几何坐标纠正应用探讨 倾斜摄影三维模型数据的几何坐标纠正应用分析 近年来,倾斜摄影技术在三维数据采集设备中得到广泛应用。倾斜摄影技术通过在飞行平台上搭载多台传感器,从不同角度采集影像,相比传统的摄影测量,倾斜…

每日算法打卡:数的三次方根 day 7

文章目录 原题链接题目描述输入格式输出格式数据范围输入样例:输出样例: 题目分析示例代码 原题链接 790. 数的三次方根 题目难度:简单 题目描述 给定一个浮点数 n,求它的三次方根。 输入格式 共一行,包含一个浮…

第17课 为rtsp流加入移动检测功能

在上节课,我们成功拿到了rtsp视频和音频流,在第13课,我们为普通的usb摄像头加上了移动检测功能,那能不能给rtsp摄像头也加上移动检测功能以实现一些好玩的应用呢?答案是肯定的,在usb摄像头检测中&#xff0…

vue结合Cesium加载gltf模型

Cesium支持什么格式? Cesium支持的格式包括:3D模型格式(如COLLADA、gITF、OBJ)、影像格式(如JPEG、PNG、GeoTIFF)、地形格式(如STL、Heightmap)、矢量数据格式(如GeoJSON…

初识Linux shell

Linux初探 Linux系统可以划分为4个部分: Linux内核:Linux系统的核心,控制着系统的所有硬件和软件,在必要时分配硬件,并根据需要执行软件。 内核主要功能: 系统内存管理:内核通过硬件上称为交换…

labelImg的安装与使用

目录 1、查看本机是否安装labelImg 2、安装labelImg 3、创建自己的数据集 3.1 建立新文件夹 3.2 打开labelImg 注意:出现闪退的情况处理。 4、文件格式转换 4.1 修改文件夹路径 4.2 新建datasets文件夹 4.3 修改图片路径 4.4 执行 1、查看本机是否安装la…

【Origin绘图1】环形图

环形图绘制 Origin绘制环形图案例 MATLAB绘制环形饼状图案例 参考 环形图如下,可分析不同年份各组分变化情况: Origin绘制环形图 貌似对Origin版本有要求,下载的2019版并无环形图绘制工具。因此,重新下载了2022版本。 案例 第…

Python 利用PYQT5设计基于RSA算法盲签名的匿名化电子支付系统设计与实现

基于RSA算法的盲签名算法 David Chaum 于1982年提出盲签名的概念,并利用RSA算法设计了第一个盲签名方案. 该方案的安全性基于大整数分解问题 盲签名的步骤 1.密钥生成 签名者执行以下步骤生成密钥对: ①签名者选择两个大素数p,q, 计算npq&#xff0…

【OpenVINO 】在 MacOS 上编译 OpenVINO C++ 项目

前言 英特尔公司发行的模型部署工具OpenVINO™模型部署套件,可以实现在不同系统环境下运行,且发布的OpenVINO™ 2023最新版目前已经支持MacOS系统并同时支持在苹果M系列芯片上部署模型。在该项目中,我们将向大家展示如何在MacOS系统、M2芯片的…

鸿鹄电子招投标系统源码实现与立项流程:基于Spring Boot、Mybatis、Redis和Layui的企业电子招采平台

随着企业的快速发展,招采管理逐渐成为企业运营中的重要环节。为了满足公司对内部招采管理提升的要求,建立一个公平、公开、公正的采购环境至关重要。在这个背景下,我们开发了一款电子招标采购软件,以最大限度地控制采购成本&#…

NFS 共享存储实验

一、服务器部署 第一步、安装nfs和rpcbind包 [rootserver ~]# yum install -y nfs-utils rpcbind截图: 第二步、这里选择一个 lvm 挂载点做 NFS 共享目录 [rootserver ~]# df -HT截图: 第三步、修改配置文件 [rootserver ~]# vi /etc/exports /home …