Python机器学习入门必学必会:机器学习与Python基础

1.机器学习常见的基础概念

根据输入数据是否具有“响应变量”信息,机器学习被分为“监督式学习”和“非监督式学习”。“监督式学习”即输入数据中即有X变量,也有y变量,特色在于使用“特征(X变量)”来预测“响应变量(y变量)”。“非监督式学习”即算法在训练模型时期不对结果进行标记,而是直接在数据点之间找有意义的关系,或者说输入数据中仅有X变量而没有y变量,特色在于针对X变量进行降维或者聚类,以挖掘特征变量的自身特征。

“监督式学习”机器学习又分为回归问题和分类问题,在python中,Classifier一般针对分类问题,Regressor一般针对回归问题(logistic除外)。错误率、精度、查准率、查全率都是“分类问题监督式学习”的常用性能度量标准。ROC曲线下方的区域又被称为AUC值,一般情况下AUC值越大,说明学习效果越好。

训练样本:即计算机用来应用算法构建模型时使用的样本。

测试样本:即计算机用来检验机器学习效果、检验外推泛化应用能力时使用的样本

偏差度量的是学习算法的期望预测与真实结果的偏离程度,反映的是学习算法的拟合能力。

方差度量的是在大量重复抽样过程中,同样大小的训练样本的变动导致的学习性能的变化,反映的是数据扰动所造成的影响,也就是模型的稳定性。

噪声度量的是针对既定学习任务,使用任何学习算法所能达到的期望泛化误差的最小值,属于不可约减误差,反映的是学习问题本身的难度,或者说是无法用机器学习算法解决的问题。噪声大小取决于数据本身的质量,当数据给定时,机器学习所能达到的泛化能力的上限也就确定。

“泛化误差”反映的模型的“泛化”能力,“泛化误差”越小,模型“泛化”能力越强。我们之所以开展机器学习是为了基于既有数据来预测未知,以期进一步改善未来商业表现,所以从应用的角度出发,我们主要关注的是泛化误差而不是经验误差,如果某种机器学习模型比另一种具有更小的泛化误差,那么这种模型就相对更加有效。

为了度量模型的泛化能力,通常我们需要进行样本分割,可以选用的方法包括验证集法、K折交叉验证、自助法、留一法等。

在机器学习项目的数据清洗与特征工程环节,有归一化、标准化、离散化、缺失值处理等多种方式。

2.Python必学基础

input函数用来实现基本的输入;print函数用来实现基本的输出:使用时如果括号内容为字符串,则可以使用搭配单引号、搭配双引号、搭配三引号。

列表:list=[a,b,c,d]。列表中的元素可以为整数、实数、字符串、元组、列表等任意类型。

元组:tuple=(a,b,c,d)。元组为不可变序列,元组中的元素不可单独修改。元组中的元素可以为整数、实数、字符串、元组、列表等任意类型,可以相同(重复),也可以不同,甚至相互不同的类型。

字典:dict = {key1 : value1, key2 : value2 }。字典由键(key)和值(value)成对组成,本质上是键和值的映射。

索引就是序列中的每个元素所在的位置,可以通过从左往右的正整数索引,也可以通过从右往左的负整数索引。从左往右的正整数索引:在Python序列中,第一个元素的索引值为0,第二个元素的索引值为1,以此类推。假设序列中共有n个元素,那么最后一个元素的索引值为n-1。从右往左的负整数索引:在Python序列中,最后一个元素的索引值为-1,倒数第二个元素的索引值为-2,以此类推。

假设序列中共有n个元素,那么第一个元素的索引值为-n。Python中使用数字n乘以一个序列(非numpy模块中的数组、非pandas模块中的序列,只是普通的序列)会生成新的序列,内容为原来序列被重复n 次的结果

序列的切片就是将序列切成小的子序列,通过切片操作可以访问一定范围内的元素或者生成一个新的子序列。

Python的保留字区分大小写。

3.流程控制语句

选择语句对应选择执行,选择语句包括三种:if语句,if…else语句和if…elif…else语句。if语句相当于“如果……就……”;if…else语句相当于“如果……就……,否则……”;if…elif…else语句相当于“如果……则……,否则如果满足某种条件则……,不满足某种条件则……,”

循环语句包括两种:while语句和for语句。while循环语句通过设定条件语句来控制是否循环执行循环体代码块中的语句,只要条件语句为真,循环就会一直执行下去,直到条件语句不再为真为止。for循环语句为重复一定次数的循环,适用于遍历或迭代对象中的元素。

跳转语句依托于循环语句,适用于从循环体中提前离开,比如在while循环达到结束条件之前离开,或者在for循环完成之前离开。跳转语句包括两种:break语句和continue语句。

4.线性回归算法

理解起来比较简单,实现起来也比较容易;是许多强大的非线性模型的基础;具有一定的稳定性和可解释性;蕴含着机器学习的很多重要思想。

5.朴素贝叶斯算法

朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时特征变量之间相互条件独立。包括高斯朴素贝叶斯、多项式朴素贝叶斯、补集朴素贝叶斯、二项式朴素贝叶斯等,均可通过Python的sklearn模块实现。

6.决策树算法

常用的特征变量选择及其临界值确定方法包括信息增益(Information Gain)、增益比率(Gain Ratio)、基尼指数(Gini Index)。在决策树算法中,先采用的特征变量未必是贡献最大的,而是要看信息增益等指标的变动程度。

7.二元Logistic回归算法

二元Logistic回归算法中所估计的参数,不是特征变量对响应变量的边际效应,而是一种“概率优势比”的概念。

8.集成学习

集成学习(组合学习、模型融合)的方式,即将单一的弱学习器组合在一起,通过群策群力形成强学习器,达到模型性能的提升。针对集成方法的不同,集成学习可以分为并行集成和串行集成。

如果弱学习器间存在强依赖的关系,后一个弱学习器的生成需依赖前一个弱学习器的结果,则集成学习方式为串行集成,代表算法为Boosting(提升法),包括AdaBoost、GBDT、XGBoost等。其中AdaBoost算法会使得难于分类的样本的权值呈指数增长,后续的训练过程将会过于偏向这类困难样本,从而导致AdaBoost算法容易受极端值干扰。回归问题损失函数常用平方损失函数、拉普拉斯损失函数(绝对损失函数)、胡贝尔损失函数和分位数损失函数,分类问题损失函数常用指数损失函数、逻辑损失函数、交叉熵损失函数。

如果弱学习器间不存在依赖关系,可以同时训练多个基学习器,适合分布式并行计算,则集成学习方式为并行集成,代表算法为装袋法、随机森林算法,其中装袋法是随机森林算法一种特例。装袋法在构建基分类器时,将所有特征变量都考虑进去,随机森林算法仅考虑部分特征变量。

9.自助法

自助法本质上是一种有放回的再抽样。

根据我多年的教学经验,大家无论是学数据分析中的机器学习还是统计学计量经济学,都建议结合着具体的软件或编程语言来学,对于不想走纯科研路线或者想成为理论大牛的大多数朋友来说,不建议过多研究数学公式,而是应一边学习知识原理,一遍上手操作,不然就会在复杂的数学公式推导面前耗尽了所有的学习热情。

10.Python机器学习与数据分析图书推荐

针对数据分析或机器学习推荐两本入门级的图书:《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社)《Python数据科学应用从入门到精通》(张甜 杨维忠 著 2023年11月新书 清华大学出版社)。这两本书的特色是在数据分析、机器学习各种算法的介绍方面通俗易懂,较少涉及数学推导,对数学基础要求相对不高,在python代码方面讲的很细致,看了以后根据自身需要选取算法、优化代码、科学调参。都有配套免费提供的源代码、数据文件和视频讲解,也有PPT、思维导图、习题等。

为什么说这两本书值得?首先说《Python机器学习原理与算法实现》(杨维忠 张甜 著 2023年2月新书 清华大学出版社),内容非常详实,包含了Python和机器学习,相当于一次获得了两本书。在讲解各类机器学习算法时,逐一详解用到的各种Python代码,针对每行代码均有恰当注释(这一点基本上是大多数书目做不到的)。这本书在出版之前曾开发成9次系列课程,在恒丰银行全行范围类开展培训,490人跟随杨维忠老师上课学习(课程限报490人),培训完成后课程在知鸟平台上回放超过3万人次。很多银行员工通过这些学习一下子就学会了Python,并且用于工作中开展数据分析、机器学习、数据可视化等,这本书也被多家商业银行选做数字化人才培训教材,成为银行员工的一本网红书。

《Python数据科学应用从入门到精通》一书,旨在教会读者实现全流程的数据分析,并且相对《Python机器学习原理与算法实现》一书增加了很多概念性、科普性的内容,进一步降低了学习难度。国务院发展研究中心创新发展研究部第二研究室主任杨超 ,山东大学经济学院金融系党支部书记、副主任、副教授、硕士生导师张博,山东管理学院信息工程学院院长 袁锋 教授、硕士生导师,山东大学经济学院刘一鸣副研究员、硕士生导师,得厚投资合伙人张伟民等一众大牛联袂推荐。书中全是干活,买这一本书相当于一下子得到了5本书(Python基础、数据清洗、特征工程、数据可视化、数据挖掘与建模),而且入门超级简单,不需要编程基础,也不需要过多数学推导,非常适用于零基础学生。全书内容共分13章。其中第1章为数据科学应用概述,第2章讲解Python的入门基础知识,第3章讲解数据清洗。第4~6章介绍特征工程,包括特征选择、特征处理、特征提取。第7章介绍数据可视化。第8~13章介绍6种数据挖掘与建模方法,分别为线性回归、Logistic回归、决策树、随机森林、神经网络、RFM分析。从数据科学应用和Python的入门,再到数据清洗与特征工程,最终完成数据挖掘与建模或数据可视化,从而可以为读者提供“从拿到数据开始,一直到构建形成最终模型或可视化报告成果”的一站式、全流程指导。

两本书随书赠送的学习资料也很多,包括全部的源代码、PPT、思维导图,还有10小时以上的讲解视频,每一章后面还有练习题及参考答案,还有学习群,相对于只看网络上的视频,一方面更加系统、高效,另一方面照着书一步步操作学起来也事半功倍。全网热销中,当当、京东等平台搜索“Python机器学习 杨维忠”“Python数据科学 杨维忠”即可。

《Python机器学习原理与算法实现》(杨维忠、张甜著,2023年2月,清华大学出版社),适用于学习Python/机器学习

《Python数据科学应用从入门到精通》(张甜 杨维忠 著 2023年11月新书 清华大学出版社)适用于学习数据分析、数据科学、数据可视化等。

创作不易,恳请多多点赞,感谢您的支持!也期待大家多多关注我,让我共同学习数据分析知识。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/605090.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python从入门到进阶】46、58同城Scrapy项目案例介绍

接上篇《45、Scrapy框架核心组件介绍》 上一篇我们学习了Scrapy框架的核心组件的使用。本篇我们进入实战第一篇,以58同城的Scrapy项目案例,结合实际再次巩固一下项目结构以及代码逻辑的用法。 一、案例网站介绍 58同城是一个生活服务类平台&#xff0c…

【分布式】分布式链路跟踪技术

为什么需要分布式链路追踪 提到分布式链路追踪,我们要先提到微服务。相信很多人都接触过微服务。微服务是一种开发软件的架构和组织方法,它侧重将服务解耦,服务之间通过API通信。使应用程序更易于扩展和更快地开发,从而加速新功能…

Go-gin-example 添加注释 第一部分 新建项目及api编写

文章目录 go-gin-example环境准备初始化 Go Modules基础使用 gin 安装测试gin是否引入 gin搭建Blog APIsgo-ini简述配置文件 阶段目标 编写简单API错误码包 完成一个demo初始化项目初始化项目数据库编写项目配置包拉取go-ini配置包在conf目录下新建app.ini文件,写入…

【操作系统篇】什么是分段和分页

什么是分段和分页 ✔️ 典型解析✔️分页✔️页表✔️分段(Segmentation)✔️ 分段和分页的区别✔️分页和分段哪个更耗资源✔️它们对性能的影响是怎样的✔️分段和分页分别适合什么场景 ✔️ 典型解析 在操作系统中,分段和分页是两种不同的…

在做题中学习(43):长度最小的子数组

LCR 008. 长度最小的子数组 - 力扣(LeetCode) 解法:同向双指针-------滑动窗口算法 解释:本是暴力枚举做法,因为全部是正整数,就可以利用单调性和双指针解决问题来节省时间 思路: 如上面图&am…

ES -极客学习

Elasticsearch 简介及其发展历史 起源 Lucene 于 Java 语言开发的搜索引擎库类创建于 1999 年,2005 年成为 Apache 顶级开源项目Lucene 具有高性能、易扩展的优点Lucene 的局限性 只能基于 Java 语言开发类库的接口学习曲线陡峭原生并不支持水平扩展原生并不支持水…

如何找到 niche 出海细分市场的 IDEA

先说结论就是:看榜单 Why:为什么看榜单? 大家会问为什么?原因很简单: 熟读唐诗三百首,不会作诗也会吟不天天看榜单上相关的优秀同行,你想干啥 心法就是下苦功夫坚持,量变引起质变…

Nginx 文件名逻辑漏洞(CVE-2013-4547)

目录 Nginx 文件名逻辑漏洞(CVE-2013-4547) 1.cd到CVE-2013-4547 2.执行docker-compose up -d 3.查看靶场是否开启成功 4.访问浏览器 5.上传含有一句话木马的图片 6.burp抓包 7.在shell.gif加空格 8.放包 9.访问路径 10.继续抓包 11.在aa后面…

优化器(一)torch.optim.SGD-随机梯度下降法

torch.optim.SGD-随机梯度下降法 import torch import torchvision.datasets from torch import nn from torch.utils.data import DataLoaderdataset torchvision.datasets.CIFAR10(root./data, trainFalse, downloadTrue,transformtorchvision.transforms.ToTensor()) data…

2、Excel:基础概念、表格结构与常见函数

数据来源:八月成交数据 数据初探 业务背景 数据来源行业:金融行业(根据应收利息和逾期金额字段来判断) 可以猜测: 业务主体:某互联网金融公司(类似支付宝)也业务模式:给…

群晖安装MariaDB

群晖安装MariaDB 在套件中心安装MariaDB给root开启远程访问权限使用工具连接数据库 在套件中心安装MariaDB 给root开启远程访问权限 # ssh 登陆群晖后执行下面操作 $ mysql -uroot -p[数据库密码] $ use mysql; $ select User,authentication_string,Host from user; # 查看账…

【数据结构—排序—交换排序】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 一、排序的概念及其运用 1、排序的概念 2、排序运用 3、 常见的排序算法 二、交换排序 1、冒泡排序 1.1算法讲解 1.2冒泡排序的实现: 1.2.1头文件的…

web前端开发技术复习问答题

目录 1.简述常见单标签和双标签有哪些? 2.常见块级元素和行级元素有哪些? 3.简述常见的列表有哪些?他们有什么区别? 4.简述超链接的href属性值如何设置?有什么区别 5.CSS基本语法 6. css中常见的引入方式有几种&…

程序员做私活赚外快的好地方,今天推荐几个

你们当程序员不会都拿着几千、万把块钱的死工资吧,今天为大家分享一些可以接私单的平台,我反正已经赚麻了。 如果你的工作相对没那么费时间,可以空闲的时候去接点私活。或者是还没有找工作之前,可以通过一些平台接一些兼职&#…

【STM32】PWR电源控制

1 PWR简介 PWR(Power Control)电源控制 PWR负责管理STM32内部的电源供电部分,可以实现可编程电压监测器和低功耗模式的功能 可编程电压监测器(PVD)可以监控VDD电源电压,当VDD下降到PVD阀值以下或上升到P…

回首2023,厉兵秣马,启航2024

目录 回首风波的20232023,感恩相遇暂停发文发文狂潮感恩有你备战2024学习之余跆拳道比赛做手工diy 学习心路年初学习伊始心路其后学习后来心路 必须看配图说明 未知的2024Flag 回首风波的2023 2023,感恩相遇 还记得,22年末,23年…

基于gitlab 12.8.0版本的完整镜像过程

目前已在一台服务器上安装了gitlab 12.8.0,并且稳定运行了有几年了,其上面也创建了大量的项目。目前要求对该gitlab及其上面的所有仓库做一个完整的镜像。具体操作过程如下: 1、确认现有的gitlab的版本号 2、到gitlab官网下载相同版本号的gi…

GitLab添加SSH key

SSH 为 Secure Shell 的缩写,SSH 为建立在应用层基础上的安全协议。 SSH 是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。 利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。 ssh-keygen 从客户端来看,SSH提供两种级…

【信息论与编码】习题-判断题-第三部分

目录 判断题48. 利用状态极限稳态分布概率和符号的状态一步转移概率来求m阶马尔可夫信源的极限熵。49. 连续信源或模拟信号的信源编码的理论基础是限失真信源编码定理 。50. 具有一一对应关系的无噪信道的信道容量CH(X)。51. 在游程编码过程中,“0”游程和“1”游程…

使用pytorch构建图卷积网络预测化学分子性质

在本文中,我们将通过化学的视角探索图卷积网络,我们将尝试将网络的特征与自然科学中的传统模型进行比较,并思考为什么它的工作效果要比传统的方法好。 图和图神经网络 化学或物理中的模型通常是一个连续函数,例如yf(x₁&#xff…