OpenVINS学习6——VioManagerHelper.cpp,VioManagerOptions.h学习与注释

前言

VioManager类里还有VioManagerHelper.cpp,VioManagerOptions.h这两个文件,也包含了一些函数,这次接着看这个 。

整体分析

void VioManager::initialize_with_gt(Eigen::Matrix<double, 17, 1> imustate)
给一个状态,然后初始化IMU的状态

bool VioManager::try_to_initialize(const ov_core::CameraData &message)
尝试初始化状态

void VioManager::retriangulate_active_tracks(const ov_core::CameraData &message)
此函数将对当前帧中的所有特征重新进行三角测量。
对于系统当前正在跟踪的所有特征,重新对它们进行三角测量。
这对于需要当前点云(例如闭环)的下游应用程序非常有用。
这将尝试对所有点进行三角测量,而不仅仅是更新中使用的点。

cv::Mat VioManager::get_historical_viz_image()
获取我们拥有的轨迹的清晰可视化图像。

std::vectorEigen::Vector3d VioManager::get_features_SLAM()
返回全局框架中的 3d SLAM 特征。

std::vectorEigen::Vector3d VioManager::get_features_ARUCO()
返回全局框架中的 3d ARUCO 特征。
VioManagerOptions.h的主要函数如下:
它分为几个不同的部分:估计器、跟踪器和模拟。如
在这里插入图片描述

源码注释

/** OpenVINS: An Open Platform for Visual-Inertial Research* Copyright (C) 2018-2023 Patrick Geneva* Copyright (C) 2018-2023 Guoquan Huang* Copyright (C) 2018-2023 OpenVINS Contributors* Copyright (C) 2018-2019 Kevin Eckenhoff** This program is free software: you can redistribute it and/or modify* it under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** This program is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the* GNU General Public License for more details.** You should have received a copy of the GNU General Public License* along with this program.  If not, see <https://www.gnu.org/licenses/>.*/#include "VioManager.h"#include "feat/Feature.h"
#include "feat/FeatureDatabase.h"
#include "feat/FeatureInitializer.h"
#include "types/LandmarkRepresentation.h"
#include "utils/print.h"#include "init/InertialInitializer.h"#include "state/Propagator.h"
#include "state/State.h"
#include "state/StateHelper.h"using namespace ov_core;
using namespace ov_type;
using namespace ov_msckf;void VioManager::initialize_with_gt(Eigen::Matrix<double, 17, 1> imustate) {//给一个状态,然后初始化IMU的状态// Initialize the system//初始化系统state->_imu->set_value(imustate.block(1, 0, 16, 1));state->_imu->set_fej(imustate.block(1, 0, 16, 1));// Fix the global yaw and position gauge freedoms// TODO: Why does this break out simulation consistency metrics?// 修复全局偏航和位置仪自由度// TODO:为什么要打破模拟一致性指标?std::vector<std::shared_ptr<ov_type::Type>> order = {state->_imu};Eigen::MatrixXd Cov = std::pow(0.02, 2) * Eigen::MatrixXd::Identity(state->_imu->size(), state->_imu->size());Cov.block(0, 0, 3, 3) = std::pow(0.017, 2) * Eigen::Matrix3d::Identity(); // qCov.block(3, 3, 3, 3) = std::pow(0.05, 2) * Eigen::Matrix3d::Identity();  // pCov.block(6, 6, 3, 3) = std::pow(0.01, 2) * Eigen::Matrix3d::Identity();  // v (static)StateHelper::set_initial_covariance(state, Cov, order);// Set the state time//设置状态时间state->_timestamp = imustate(0, 0);startup_time = imustate(0, 0);is_initialized_vio = true;// Cleanup any features older then the initialization time//清除所有比初始化时间早的特征trackFEATS->get_feature_database()->cleanup_measurements(state->_timestamp);if (trackARUCO != nullptr) {trackARUCO->get_feature_database()->cleanup_measurements(state->_timestamp);}// Print what we init'ed with//打印信息PRINT_DEBUG(GREEN "[INIT]: INITIALIZED FROM GROUNDTRUTH FILE!!!!!\n" RESET);PRINT_DEBUG(GREEN "[INIT]: orientation = %.4f, %.4f, %.4f, %.4f\n" RESET, state->_imu->quat()(0), state->_imu->quat()(1),state->_imu->quat()(2), state->_imu->quat()(3));PRINT_DEBUG(GREEN "[INIT]: bias gyro = %.4f, %.4f, %.4f\n" RESET, state->_imu->bias_g()(0), state->_imu->bias_g()(1),state->_imu->bias_g()(2));PRINT_DEBUG(GREEN "[INIT]: velocity = %.4f, %.4f, %.4f\n" RESET, state->_imu->vel()(0), state->_imu->vel()(1), state->_imu->vel()(2));PRINT_DEBUG(GREEN "[INIT]: bias accel = %.4f, %.4f, %.4f\n" RESET, state->_imu->bias_a()(0), state->_imu->bias_a()(1),state->_imu->bias_a()(2));PRINT_DEBUG(GREEN "[INIT]: position = %.4f, %.4f, %.4f\n" RESET, state->_imu->pos()(0), state->_imu->pos()(1), state->_imu->pos()(2));
}bool VioManager::try_to_initialize(const ov_core::CameraData &message) {//尝试初始化状态
//这应该调用我们的初始化程序并尝试初始化状态。
//将来我们应该从这里调用结构运动代码。
//该功能还可以用于在发生故障后重新初始化系统。// Directly return if the initialization thread is running// Note that we lock on the queue since we could have finished an update// And are using this queue to propagate the state forward. We should wait in this case// 如果初始化线程正在运行则直接返回// 请注意,我们锁定队列,因为我们本来可以完成更新// 并使用该队列向前传播状态。在这种情况下我们应该等待if (thread_init_running) {std::lock_guard<std::mutex> lck(camera_queue_init_mtx);camera_queue_init.push_back(message.timestamp);return false;}// If the thread was a success, then return success!//如果线程成功,返回成功if (thread_init_success) {return true;}// Run the initialization in a second thread so it can go as slow as it desires//在第二个线程运行初始化,从而可以随心所欲地慢下来thread_init_running = true;std::thread thread([&] {// Returns from our initializer//从我们的初始化器返回double timestamp;Eigen::MatrixXd covariance;std::vector<std::shared_ptr<ov_type::Type>> order;auto init_rT1 = boost::posix_time::microsec_clock::local_time();// Try to initialize the system// We will wait for a jerk if we do not have the zero velocity update enabled// Otherwise we can initialize right away as the zero velocity will handle the stationary case// 尝试初始化系统// 如果我们没有启用零速度更新,我们将等待一个急动// 否则我们可以立即初始化,因为零速度将处理静止情况bool wait_for_jerk = (updaterZUPT == nullptr);bool success = initializer->initialize(timestamp, covariance, order, state->_imu, wait_for_jerk);// If we have initialized successfully we will set the covariance and state elements as needed// TODO: set the clones and SLAM features here so we can start updating right away...// 如果初始化成功,我们将根据需要设置协方差和状态元素// TODO:在此处设置克隆和 SLAM 特征,以便我们可以立即开始更新...if (success) {// Set our covariance (state should already be set in the initializer)// 设置我们的协方差(状态应该已经在初始化器中设置)StateHelper::set_initial_covariance(state, covariance, order);// Set the state time//设置状态时间state->_timestamp = timestamp;startup_time = timestamp;// Cleanup any features older than the initialization time// Also increase the number of features to the desired amount during estimation// NOTE: we will split the total number of features over all cameras uniformly// 清理所有早于初始化时间的特征// 在估计期间还将特征数量增加到所需的数量// 注意:我们将统一划分所有相机的特征总数trackFEATS->get_feature_database()->cleanup_measurements(state->_timestamp);trackFEATS->set_num_features(std::floor((double)params.num_pts / (double)params.state_options.num_cameras));if (trackARUCO != nullptr) {trackARUCO->get_feature_database()->cleanup_measurements(state->_timestamp);}// If we are moving then don't do zero velocity update4// 如果我们正在移动,则不要进行零速度更新if (state->_imu->vel().norm() > params.zupt_max_velocity) {has_moved_since_zupt = true;}// Else we are good to go, print out our stats// 否则我们就可以开始了,打印出我们的统计数据auto init_rT2 = boost::posix_time::microsec_clock::local_time();PRINT_INFO(GREEN "[init]: successful initialization in %.4f seconds\n" RESET, (init_rT2 - init_rT1).total_microseconds() * 1e-6);PRINT_INFO(GREEN "[init]: orientation = %.4f, %.4f, %.4f, %.4f\n" RESET, state->_imu->quat()(0), state->_imu->quat()(1),state->_imu->quat()(2), state->_imu->quat()(3));PRINT_INFO(GREEN "[init]: bias gyro = %.4f, %.4f, %.4f\n" RESET, state->_imu->bias_g()(0), state->_imu->bias_g()(1),state->_imu->bias_g()(2));PRINT_INFO(GREEN "[init]: velocity = %.4f, %.4f, %.4f\n" RESET, state->_imu->vel()(0), state->_imu->vel()(1), state->_imu->vel()(2));PRINT_INFO(GREEN "[init]: bias accel = %.4f, %.4f, %.4f\n" RESET, state->_imu->bias_a()(0), state->_imu->bias_a()(1),state->_imu->bias_a()(2));PRINT_INFO(GREEN "[init]: position = %.4f, %.4f, %.4f\n" RESET, state->_imu->pos()(0), state->_imu->pos()(1), state->_imu->pos()(2));// Remove any camera times that are order then the initialized time// This can happen if the initialization has taken a while to perform// 删除所有顺序为初始化时间的相机时间// 如果初始化需要一段时间才能执行,则可能会发生这种情况std::lock_guard<std::mutex> lck(camera_queue_init_mtx);std::vector<double> camera_timestamps_to_init;for (size_t i = 0; i < camera_queue_init.size(); i++) {if (camera_queue_init.at(i) > timestamp) {camera_timestamps_to_init.push_back(camera_queue_init.at(i));}}// Now we have initialized we will propagate the state to the current timestep// In general this should be ok as long as the initialization didn't take too long to perform// Propagating over multiple seconds will become an issue if the initial biases are bad// 现在我们已经初始化了,我们将把状态传播到当前时间步// 一般来说,只要初始化执行时间不长就应该没问题// 如果初始偏差不好,那么在多秒内传播将成为一个问题size_t clone_rate = (size_t)((double)camera_timestamps_to_init.size() / (double)params.state_options.max_clone_size) + 1;for (size_t i = 0; i < camera_timestamps_to_init.size(); i += clone_rate) {propagator->propagate_and_clone(state, camera_timestamps_to_init.at(i));StateHelper::marginalize_old_clone(state);}PRINT_DEBUG(YELLOW "[init]: moved the state forward %.2f seconds\n" RESET, state->_timestamp - timestamp);thread_init_success = true;camera_queue_init.clear();} else {auto init_rT2 = boost::posix_time::microsec_clock::local_time();PRINT_DEBUG(YELLOW "[init]: failed initialization in %.4f seconds\n" RESET, (init_rT2 - init_rT1).total_microseconds() * 1e-6);thread_init_success = false;std::lock_guard<std::mutex> lck(camera_queue_init_mtx);camera_queue_init.clear();}// Finally, mark that the thread has finished running//最后,标记线程已经运行完毕thread_init_running = false;});// If we are single threaded, then run single threaded// Otherwise detach this thread so it runs in the background!// 如果我们是单线程,则运行单线程// 否则分离该线程,使其在后台运行!if (!params.use_multi_threading_subs) {thread.join();} else {thread.detach();}return false;
}void VioManager::retriangulate_active_tracks(const ov_core::CameraData &message) {//此函数将对当前帧中的所有特征重新进行三角测量。//对于系统当前正在跟踪的所有特征,重新对它们进行三角测量。//这对于需要当前点云(例如闭环)的下游应用程序非常有用。//这将尝试对所有点进行三角测量,而不仅仅是更新中使用的点。// Start timing//开始计时boost::posix_time::ptime retri_rT1, retri_rT2, retri_rT3;retri_rT1 = boost::posix_time::microsec_clock::local_time();// Clear old active track data//清楚以前活跃的跟踪数据assert(state->_clones_IMU.find(message.timestamp) != state->_clones_IMU.end());active_tracks_time = message.timestamp;active_image = cv::Mat();trackFEATS->display_active(active_image, 255, 255, 255, 255, 255, 255, " ");if (!active_image.empty()) {active_image = active_image(cv::Rect(0, 0, message.images.at(0).cols, message.images.at(0).rows));}active_tracks_posinG.clear();active_tracks_uvd.clear();// Current active tracks in our frontend// TODO: should probably assert here that these are at the message time...// 我们前端中当前活跃的跟踪// TODO:可能应该在这里断言这些是在消息时间...auto last_obs = trackFEATS->get_last_obs();auto last_ids = trackFEATS->get_last_ids();// New set of linear systems that only contain the latest track info// 一套新的线性系统,仅包含最新的跟踪信息std::map<size_t, Eigen::Matrix3d> active_feat_linsys_A_new;std::map<size_t, Eigen::Vector3d> active_feat_linsys_b_new;std::map<size_t, int> active_feat_linsys_count_new;std::unordered_map<size_t, Eigen::Vector3d> active_tracks_posinG_new;// Append our new observations for each camera//加入每个相机的新观测std::map<size_t, cv::Point2f> feat_uvs_in_cam0;for (auto const &cam_id : message.sensor_ids) {// IMU historical clone//IMU历史的克隆Eigen::Matrix3d R_GtoI = state->_clones_IMU.at(active_tracks_time)->Rot();Eigen::Vector3d p_IinG = state->_clones_IMU.at(active_tracks_time)->pos();// Calibration for this cam_id//对当前cam_id的标定Eigen::Matrix3d R_ItoC = state->_calib_IMUtoCAM.at(cam_id)->Rot();Eigen::Vector3d p_IinC = state->_calib_IMUtoCAM.at(cam_id)->pos();// Convert current CAMERA position relative to global//将当前相机坐标转变为全局坐标Eigen::Matrix3d R_GtoCi = R_ItoC * R_GtoI;Eigen::Vector3d p_CiinG = p_IinG - R_GtoCi.transpose() * p_IinC;// Loop through each measurement//每个测量循环assert(last_obs.find(cam_id) != last_obs.end());assert(last_ids.find(cam_id) != last_ids.end());for (size_t i = 0; i < last_obs.at(cam_id).size(); i++) {// Record this feature uv if is seen from cam0//如果能从cam0看到则记录这个特征size_t featid = last_ids.at(cam_id).at(i);cv::Point2f pt_d = last_obs.at(cam_id).at(i).pt;if (cam_id == 0) {feat_uvs_in_cam0[featid] = pt_d;}// Skip this feature if it is a SLAM feature (the state estimate takes priority)//如果是一个SLAM特征则跳过(状态估算优先)if (state->_features_SLAM.find(featid) != state->_features_SLAM.end()) {continue;}// Get the UV coordinate normal//获取法线UV坐标cv::Point2f pt_n = state->_cam_intrinsics_cameras.at(cam_id)->undistort_cv(pt_d);Eigen::Matrix<double, 3, 1> b_i;b_i << pt_n.x, pt_n.y, 1;b_i = R_GtoCi.transpose() * b_i;b_i = b_i / b_i.norm();Eigen::Matrix3d Bperp = skew_x(b_i);// Append to our linear system//加入线性系统Eigen::Matrix3d Ai = Bperp.transpose() * Bperp;Eigen::Vector3d bi = Ai * p_CiinG;if (active_feat_linsys_A.find(featid) == active_feat_linsys_A.end()) {active_feat_linsys_A_new.insert({featid, Ai});active_feat_linsys_b_new.insert({featid, bi});active_feat_linsys_count_new.insert({featid, 1});} else {active_feat_linsys_A_new[featid] = Ai + active_feat_linsys_A[featid];active_feat_linsys_b_new[featid] = bi + active_feat_linsys_b[featid];active_feat_linsys_count_new[featid] = 1 + active_feat_linsys_count[featid];}// For this feature, recover its 3d position if we have enough observations!//对这个特征,如果我们有足够观测则恢复3d坐标if (active_feat_linsys_count_new.at(featid) > 3) {// Recover feature estimate//恢复特征估计Eigen::Matrix3d A = active_feat_linsys_A_new[featid];Eigen::Vector3d b = active_feat_linsys_b_new[featid];Eigen::MatrixXd p_FinG = A.colPivHouseholderQr().solve(b);Eigen::MatrixXd p_FinCi = R_GtoCi * (p_FinG - p_CiinG);// Check A and p_FinCi//检查A和p_FinCiEigen::JacobiSVD<Eigen::Matrix3d> svd(A);Eigen::MatrixXd singularValues;singularValues.resize(svd.singularValues().rows(), 1);singularValues = svd.singularValues();double condA = singularValues(0, 0) / singularValues(singularValues.rows() - 1, 0);// If we have a bad condition number, or it is too close// Then set the flag for bad (i.e. set z-axis to nan)// 如果我们的条件数不好,或者太接近// 然后设置 bad 标志(即将 z 轴设置为 nan)if (std::abs(condA) <= params.featinit_options.max_cond_number && p_FinCi(2, 0) >= params.featinit_options.min_dist &&p_FinCi(2, 0) <= params.featinit_options.max_dist && !std::isnan(p_FinCi.norm())) {active_tracks_posinG_new[featid] = p_FinG;}}}}size_t total_triangulated = active_tracks_posinG.size();// Update active set of linear systems//更新线性系统活跃集active_feat_linsys_A = active_feat_linsys_A_new;active_feat_linsys_b = active_feat_linsys_b_new;active_feat_linsys_count = active_feat_linsys_count_new;active_tracks_posinG = active_tracks_posinG_new;retri_rT2 = boost::posix_time::microsec_clock::local_time();// Return if no features//没有特征则返回if (active_tracks_posinG.empty() && state->_features_SLAM.empty())return;// Append our SLAM features we have//如果有加入SLAM特征for (const auto &feat : state->_features_SLAM) {Eigen::Vector3d p_FinG = feat.second->get_xyz(false);if (LandmarkRepresentation::is_relative_representation(feat.second->_feat_representation)) {// Assert that we have an anchor pose for this feature//确保当前特征有一个锚点位姿assert(feat.second->_anchor_cam_id != -1);// Get calibration for our anchor camera//从我们的锚点相机得到标定Eigen::Matrix3d R_ItoC = state->_calib_IMUtoCAM.at(feat.second->_anchor_cam_id)->Rot();Eigen::Vector3d p_IinC = state->_calib_IMUtoCAM.at(feat.second->_anchor_cam_id)->pos();// Anchor pose orientation and position//锚点位姿旋转和位置Eigen::Matrix3d R_GtoI = state->_clones_IMU.at(feat.second->_anchor_clone_timestamp)->Rot();Eigen::Vector3d p_IinG = state->_clones_IMU.at(feat.second->_anchor_clone_timestamp)->pos();// Feature in the global frame//全局坐标系中的特征p_FinG = R_GtoI.transpose() * R_ItoC.transpose() * (feat.second->get_xyz(false) - p_IinC) + p_IinG;}active_tracks_posinG[feat.second->_featid] = p_FinG;}// Calibration of the first camera (cam0)//第一个相机的标定std::shared_ptr<Vec> distortion = state->_cam_intrinsics.at(0);std::shared_ptr<PoseJPL> calibration = state->_calib_IMUtoCAM.at(0);Eigen::Matrix<double, 3, 3> R_ItoC = calibration->Rot();Eigen::Matrix<double, 3, 1> p_IinC = calibration->pos();// Get current IMU clone state//得到当前IMU的克隆状态std::shared_ptr<PoseJPL> clone_Ii = state->_clones_IMU.at(active_tracks_time);Eigen::Matrix3d R_GtoIi = clone_Ii->Rot();Eigen::Vector3d p_IiinG = clone_Ii->pos();// 4. Next we can update our variable with the global position//    We also will project the features into the current frame// 4. 接下来我们可以用全局位置更新我们的变量// 我们还将把特征投影到当前帧中for (const auto &feat : active_tracks_posinG) {// For now skip features not seen from current frame// TODO: should we publish other features not tracked in cam0??// 现在跳过当前帧中未看到的特征// TODO: 我们应该发布 cam0 中未跟踪的其他功能吗?if (feat_uvs_in_cam0.find(feat.first) == feat_uvs_in_cam0.end())continue;// Calculate the depth of the feature in the current frame// Project SLAM feature and non-cam0 features into the current frame of reference// 计算当前帧中特征的深度// 将 SLAM 特征和非 cam0 特征投影到当前参考系中Eigen::Vector3d p_FinIi = R_GtoIi * (feat.second - p_IiinG);Eigen::Vector3d p_FinCi = R_ItoC * p_FinIi + p_IinC;double depth = p_FinCi(2);Eigen::Vector2d uv_dist;if (feat_uvs_in_cam0.find(feat.first) != feat_uvs_in_cam0.end()) {uv_dist << (double)feat_uvs_in_cam0.at(feat.first).x, (double)feat_uvs_in_cam0.at(feat.first).y;} else {Eigen::Vector2d uv_norm;uv_norm << p_FinCi(0) / depth, p_FinCi(1) / depth;uv_dist = state->_cam_intrinsics_cameras.at(0)->distort_d(uv_norm);}// Skip if not valid (i.e. negative depth, or outside of image)// 如果无效则跳过(即负深度或图像外部)if (depth < 0.1) {continue;}// Skip if not valid (i.e. negative depth, or outside of image)// 如果无效则跳过(即负深度或图像外部)int width = state->_cam_intrinsics_cameras.at(0)->w();int height = state->_cam_intrinsics_cameras.at(0)->h();if (uv_dist(0) < 0 || (int)uv_dist(0) >= width || uv_dist(1) < 0 || (int)uv_dist(1) >= height) {// PRINT_DEBUG("feat %zu -> depth = %.2f | u_d = %.2f | v_d = %.2f\n",(*it2)->featid,depth,uv_dist(0),uv_dist(1));continue;}// Finally construct the uv and depth//最后构建uv和深度Eigen::Vector3d uvd;uvd << uv_dist, depth;active_tracks_uvd.insert({feat.first, uvd});}retri_rT3 = boost::posix_time::microsec_clock::local_time();// Timing informationPRINT_ALL(CYAN "[RETRI-TIME]: %.4f seconds for triangulation (%zu tri of %zu active)\n" RESET,(retri_rT2 - retri_rT1).total_microseconds() * 1e-6, total_triangulated, active_feat_linsys_A.size());PRINT_ALL(CYAN "[RETRI-TIME]: %.4f seconds for re-projection into current\n" RESET, (retri_rT3 - retri_rT2).total_microseconds() * 1e-6);PRINT_ALL(CYAN "[RETRI-TIME]: %.4f seconds total\n" RESET, (retri_rT3 - retri_rT1).total_microseconds() * 1e-6);
}cv::Mat VioManager::get_historical_viz_image() {//获取我们拥有的轨迹的清晰可视化图像。// Return if not ready yet//没准备好返回if (state == nullptr || trackFEATS == nullptr)return cv::Mat();// Build an id-list of what features we should highlight (i.e. SLAM)// 构建一个我们应该突出显示的功能的 ID 列表(即 SLAM)std::vector<size_t> highlighted_ids;for (const auto &feat : state->_features_SLAM) {highlighted_ids.push_back(feat.first);}// Text we will overlay if needed// 如果需要,我们将覆盖文本std::string overlay = (did_zupt_update) ? "zvupt" : "";overlay = (!is_initialized_vio) ? "init" : overlay;// Get the current active tracks// 获取当前活动跟踪cv::Mat img_history;trackFEATS->display_history(img_history, 255, 255, 0, 255, 255, 255, highlighted_ids, overlay);if (trackARUCO != nullptr) {trackARUCO->display_history(img_history, 0, 255, 255, 255, 255, 255, highlighted_ids, overlay);// trackARUCO->display_active(img_history, 0, 255, 255, 255, 255, 255, overlay);}// Finally return the image//最后返回图像return img_history;
}std::vector<Eigen::Vector3d> VioManager::get_features_SLAM() {//返回全局框架中的 3d SLAM 特征。std::vector<Eigen::Vector3d> slam_feats;for (auto &f : state->_features_SLAM) {if ((int)f.first <= 4 * state->_options.max_aruco_features)continue;if (ov_type::LandmarkRepresentation::is_relative_representation(f.second->_feat_representation)) {// Assert that we have an anchor pose for this feature// 确保我们有这个特征的锚点姿态assert(f.second->_anchor_cam_id != -1);// Get calibration for our anchor camera// 获取锚点相机的校准Eigen::Matrix<double, 3, 3> R_ItoC = state->_calib_IMUtoCAM.at(f.second->_anchor_cam_id)->Rot();Eigen::Matrix<double, 3, 1> p_IinC = state->_calib_IMUtoCAM.at(f.second->_anchor_cam_id)->pos();// Anchor pose orientation and position// 锚点姿态方向和位置Eigen::Matrix<double, 3, 3> R_GtoI = state->_clones_IMU.at(f.second->_anchor_clone_timestamp)->Rot();Eigen::Matrix<double, 3, 1> p_IinG = state->_clones_IMU.at(f.second->_anchor_clone_timestamp)->pos();// Feature in the global frame//全局坐标系中的位置slam_feats.push_back(R_GtoI.transpose() * R_ItoC.transpose() * (f.second->get_xyz(false) - p_IinC) + p_IinG);} else {slam_feats.push_back(f.second->get_xyz(false));}}return slam_feats;
}std::vector<Eigen::Vector3d> VioManager::get_features_ARUCO() {//返回全局框架中的 3d ARUCO 特征。std::vector<Eigen::Vector3d> aruco_feats;for (auto &f : state->_features_SLAM) {if ((int)f.first > 4 * state->_options.max_aruco_features)continue;if (ov_type::LandmarkRepresentation::is_relative_representation(f.second->_feat_representation)) {// Assert that we have an anchor pose for this featureassert(f.second->_anchor_cam_id != -1);// Get calibration for our anchor cameraEigen::Matrix<double, 3, 3> R_ItoC = state->_calib_IMUtoCAM.at(f.second->_anchor_cam_id)->Rot();Eigen::Matrix<double, 3, 1> p_IinC = state->_calib_IMUtoCAM.at(f.second->_anchor_cam_id)->pos();// Anchor pose orientation and positionEigen::Matrix<double, 3, 3> R_GtoI = state->_clones_IMU.at(f.second->_anchor_clone_timestamp)->Rot();Eigen::Matrix<double, 3, 1> p_IinG = state->_clones_IMU.at(f.second->_anchor_clone_timestamp)->pos();// Feature in the global framearuco_feats.push_back(R_GtoI.transpose() * R_ItoC.transpose() * (f.second->get_xyz(false) - p_IinC) + p_IinG);} else {aruco_feats.push_back(f.second->get_xyz(false));}}return aruco_feats;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/604772.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】段错误、内存溢出、内存泄漏(区别)、堆溢出、栈溢出

目录 段错误内存溢出内存泄漏栈溢出堆溢出栈溢出和堆溢出区别 段错误 什么时候会发生段错误&#xff1f; 段错误通常发生在访问非法内存地址的时候&#xff0c;即使用了野指针&#xff08;指向一个已删除的对象或者未申请访问受限内存区域的指针&#xff09;或这试图修改字符串…

【Matplotlib】基础设置之图像处理05

图像基础 导入相应的包&#xff1a; import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np %matplotlib inline导入图像 我们首先导入上面的图像&#xff0c;注意 matplotlib 默认只支持 PNG 格式的图像&#xff0c;我们可以使用 mpimg.im…

MySQL深入——9

如何正确的显示随机信息&#xff1f; 我们来模拟在英语单词app当中随机出现三个英语单词的情况&#xff0c;我们首先创建一张表words&#xff0c;然后给这个表当中插入10000条信息进行量化。 select word from words order by rand() limit 3&#xff1b; order by rand&…

基础数据结构第七期 Trie树

前言 Trie树大家能够掌握即可&#xff0c;其实用到的地方并不多&#xff0c;本文将为大家介绍一下。 一、Trie树的基本内容 1、根节点不包含字符&#xff0c;除根结点之外每一个结点都只包含一个字符&#xff1b; 2、字典树用边表示字母表示 3、从根节点到某一结点&#xff…

通过盲对抗性扰动实时击败基于DNN的流量分析系统

文章信息 论文题目&#xff1a;Defeating DNN-Based Traffic Analysis Systems in Real-Time With Blind Adversarial Perturbations 期刊&#xff08;会议&#xff09;&#xff1a;30th USENIX Security Symposium 时间&#xff1a;2021 级别&#xff1a;CCF A 文章链接&…

Spring之代理模式

1、概念 1.1 介绍 二十三种设计模式中的一种&#xff0c;属于结构型模式。它的作用就是通过提供一个代理类&#xff0c;让我们在调用目标方法的时候&#xff0c;不再是直接对目标方法进行调用&#xff0c;而是通过代理类间接调用。让不属于目标方法核心逻辑的代码从目标方法中…

H266/VVC率失真优化与速率控制概述

率失真优化技术 率失真优化&#xff1a; 视频编码的主要目的是在保证一定视频质量的条件下尽量降低视频的编码比特率&#xff0c;或者在一定编码比特率限制条件下尽量地减小编码失真。在固定的编码框架下&#xff0c;为了应对不同的视频内容&#xff0c;往往有多种候选的编码方…

126基于matlab的孪生支持向量机(Twin support vector machine,TWSVM)是SVM的一种变形算法

基于matlab的孪生支持向量机&#xff08;Twin support vector machine,TWSVM&#xff09;是SVM的一种变形算法。该采用WSVM进行二分类&#xff0c;程序已注释数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。 126matlabTWSVM模式识别 (xiaohongshu.com)

【Python期末】动态爬取电影Top250数据可视化处理(有GUI界面/无数据库)

诚接计算机专业编程作业(C语言、C、Python、Java、HTML、JavaScript、Vue等)&#xff0c;10/15R左右&#xff0c;如有需要请私信我&#xff0c;或者加我的企鹅号&#xff1a;1404293476 本文资源&#xff1a;https://download.csdn.net/download/weixin_47040861/88713693 目录…

模拟实现strlen函数的三种方法

本文介绍&#xff1a;模拟实现strlen函数的三种方法&#xff08;指针相减&#xff0c;计数器&#xff0c;递归&#xff09; 自我介绍&#xff1a;一个脑子不好的大一学生&#xff0c;c语言接触还没到半年&#xff0c;若涉及到效率等问题&#xff0c;各位都可以在评论区提出见解…

解决Typescript报错问题[亲测有效]

目录 1、安装 2、报错 3、分析 4、三种更新途径 如果你tsc -v报错&#xff0c;请看这篇文章&#xff0c;本人亲测有效&#xff01; 1、安装 在前端项目中使用TS&#xff0c;需要进行安装&#xff0c;命令为&#xff1a;npm install -g typescript 查看TS版本&#xff1a; …

网关Gateway

什么是网关? 网关实质上是一个网络通向其他网络的 IP 地址&#xff0c;是当前微服务项目的"统一入口"。 网关能做什么&#xff1f; 反向代理 、鉴权、 流量控制、 熔断、 日志监控等 图片原文&#xff1a;http://t.csdnimg.cn/SvUJh 核心概念 Router&#xff08;…

AArch64 memory management学习(一)

提示 该博客主要为个人学习&#xff0c;通过阅读官网手册整理而来&#xff08;个人觉得阅读官网的英文文档非常有助于理解各个IP特性&#xff09;。若有不对之处请参考参考文档&#xff0c;以官网参考文档为准。AArch64 memory management学习一共分为两章&#xff0c;这是第一…

GD32 支持IAP的bootloader开发,使用串口通过Ymodem协议传输固件(附代码)

资料下载: https://download.csdn.net/download/wouderw/88714985 一、概述 关于IAP的原理和Ymodem协议&#xff0c;本文不做任何论述&#xff0c;本文只论述bootloader如何使用串口通过Ymodem协议接收升级程序并进行IAP升级&#xff0c;以及bootloader和主程序两个工程的配置…

【算法提升】LeetCode每五日一总结【01/01--01/05】

文章目录 LeetCode每五日一总结【01/01--01/05】2023/12/31今日数据结构&#xff1a;二叉树的前/中/后 序遍历<非递归> 2024/01/01今日数据结构&#xff1a;二叉树的 前/中/后 序遍历 三合一代码<非递归>今日数据结构&#xff1a;二叉树的 前/中/后 序遍历 三合一代…

Windows系统任务栏应用图标显示成空白的解决方案

背景 任务栏应用图标为空白&#xff1a; 原因 Windows系统为了加快系统响应速度&#xff0c;在安装完应用第一次显示完应用图标后&#xff0c;会将应用的图标放入缓存中&#xff0c;以后每次显示应用直接在缓存中获取&#xff0c;如果缓存中的图标信息发生错误&#xff0c;…

09-责任链模式-C语言实现

责任链模式&#xff1a;Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the request.Chain the receiving objects and pass the request along the chain until an object handles it.&#xff08;使多个对象都有…

Java学习苦旅(二十三)——二叉搜索树

本篇博客将详细讲解二叉搜索树。 文章目录 二叉搜索树概念操作查找插入删除 性能分析 结尾 二叉搜索树 概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#xff0c;或者是具有以下性质的二叉树: 若它的左子树不为空&#xff0c;则左子树上所有节点的值都小于根…

java数据结构与算法刷题-----LeetCode64. 最小路径和

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 很多人觉得动态规划很难&#xff0c;但它就是固定套路而已。其实动态规划只…

最新ChatGPT网站系统源码+详细搭建部署教程+Midjourney绘画AI绘画

一、前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作Ch…