pyfolio工具结合backtrader分析量化策略组合,附源码+问题分析

pyfolio可以分析backtrader的策略,并生成一系列好看的图表,但是由于pyfolio直接install的稳定版有缺陷,开发版也存在诸多问题,使用的依赖版本都偏低,试用了一下之后还是更推荐quantstats。

1、安装依赖

pip install pyfolio
# 直接install是稳定版会报各式各样的错误,要用git拉开发版
pip install git+https://github.com/quantopian/pyfolio

但是git拉也可能报各种http代理等问题,可以使用如下方法解决:

  1. 克隆 GitHub 仓库: 打开命令行或终端,然后使用以下命令将 pyfolio 仓库克隆到本地:

    bashCopy code

    如果git clone https://github.com/quantopian/pyfolio.git报错,可以用下面格式
    git clone git@github.com:quantopian/pyfolio.git

    这将在当前目录下创建一个名为 “pyfolio” 的文件夹,并将仓库的所有代码下载到其中。

  2. 切换到仓库目录: 使用以下命令进入 pyfolio 文件夹:

    bashCopy code

    cd pyfolio

  3. 安装: 在 pyfolio 文件夹中执行以下命令,安装开发版本的代码:

    bashCopy code

    pip install -e .

    -e 选项表示以 “editable” 模式安装,这意味着你对代码的修改会立即反映在安装的库中。这对于开发和测试非常有用。

pyfolio策略源码

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Author:Airyv
@Project:test 
@File:quantstats_demo.py
@Date:2024/1/1 21:45 
@desc:
'''from datetime import datetimeimport backtrader as bt  # 升级到最新版
import matplotlib.pyplot as plt  # 由于 Backtrader 的问题,此处要求 pip install matplotlib==3.2.2
import akshare as ak  # 升级到最新版
import pandas as pd
import quantstats as qs
import pyfolio as pfplt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False# 利用 AKShare 获取股票的后复权数据,这里只获取前 6 列
stock_hfq_df = ak.stock_zh_a_hist(symbol="600028", adjust="hfq").iloc[:, :6]
# 处理字段命名,以符合 Backtrader 的要求
stock_hfq_df.columns = ['date','open','close','high','low','volume',
]
# 把 date 作为日期索引,以符合 Backtrader 的要求
stock_hfq_df.index = pd.to_datetime(stock_hfq_df['date'])class MyStrategy(bt.Strategy):"""主策略程序"""params = (("maperiod", 5),)  # 全局设定交易策略的参数def __init__(self):"""初始化函数"""self.data_close = self.datas[0].close  # 指定价格序列# 初始化交易指令、买卖价格和手续费self.order = Noneself.buy_price = Noneself.buy_comm = None# 添加移动均线指标self.sma = bt.indicators.SimpleMovingAverage(self.datas[0], period=self.params.maperiod)def next(self):"""执行逻辑"""if self.order:  # 检查是否有指令等待执行,return# 检查是否持仓if not self.position:  # 没有持仓if self.data_close[0] > self.sma[0]:  # 执行买入条件判断:收盘价格上涨突破20日均线self.order = self.buy(size=100)  # 执行买入else:if self.data_close[0] < self.sma[0]:  # 执行卖出条件判断:收盘价格跌破20日均线self.order = self.sell(size=100)  # 执行卖出# 更新指令状态if self.order:self.buy_price = self.data_close[0]self.buy_comm = self.broker.getcommissioninfo(self.data).getcommission(self.buy_price, 100)self.order = None  # 在这里将订单设置为None,表示没有正在执行的订单else:self.buy_price = Noneself.buy_comm = Nonecerebro = bt.Cerebro()  # 初始化回测系统
start_date = datetime(2010, 1, 3)  # 回测开始时间
end_date = datetime(2023, 6, 16)  # 回测结束时间
data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据
# data=bt.feeds.PandasData(dataname=df,fromdate=start_date,todate=end_date)#加银数据
cerebro.adddata(data)  # 将数据传入回测系统
cerebro.addstrategy(MyStrategy)  # 将交易策略加载到回测系统中
# 加入pyfolio分析者
cerebro.addanalyzer(bt.analyzers.PyFolio, _name='pyfolio')
start_cash = 1000000
cerebro.broker.setcash(start_cash)  # 设置初始资本为 100000
cerebro.broker.setcommission(commission=0.002)  # 设置交易手续费为 0.2%
result = cerebro.run()  # 运行回测系统port_value = cerebro.broker.getvalue()  # 获取回测结束后的总资金
pnl = port_value - start_cash  # 盈亏统计print(f"初始资金: {start_cash}\n回测期间:{start_date.strftime('%Y%m%d')}:{end_date.strftime('%Y%m%d')}")
print(f"总资金: {round(port_value, 2)}")
print(f"净收益: {round(pnl, 2)}")# cerebro.plot(style='candlestick')  # 画图cerebro.broker.getvalue()strat = result[0]
pyfoliozer = strat.analyzers.getbyname('pyfolio')returns, positions, transactions, gross_lev = pyfoliozer.get_pf_items()
%matplotlib inline
pf.create_full_tear_sheet(returns,positions=positions,transactions=transactions,live_start_date='2023-01-03')# returns, positions, transactions, gross_lev = pyfoliozer.get_pf_items()
# returns
# positions
# transactions
# gross_lev# pf.create_full_tear_sheet(returns)
# pf.create_full_tear_sheet(
#     returns,
#     positions=positions,
#     transactions=transactions,
#     live_start_date='2010-01-03',
#     round_trips=True)
# pf.create_full_tear_sheet(returns,live_start_date='2010-01-03')
# cerebro.plot()

错误解决

解决后可能报错:

  1. AttributeError: 'Series' object has no attribute 'iteritems'
    solution:

    For anyone else who has the same error pls edit the plotting.py file in ur site packages folder from iteritems() to items()

    意思是进入plotting.py文件(可以用everything搜索)中全局搜索iteritems(),替换为items()即可

  2. AttributeError: module 'pandas' has no attribute 'Float64Index'

    原因是pandas版本太高了(2.0.1),安装低版本:

pip uninstall pandas
pip install pandas==1.5.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
  1. File "...\pyfolio\timeseries.py", line 896, in get_max_drawdown_underwater

    将timeseries.py893行改为:

# valley = np.argmin(underwater)  # end of the period
valley = underwater.idxmin()
  1. File "\pyfolio\round_trips.py", line 133, in _groupby_consecutive grouped_price = (t.groupby(('block_dir',KeyError: ('block_dir', 'block_time')

    修改round_trips.py第133行

        # grouped_price = (t.groupby(('block_dir',#                            'block_time'))#                   .apply(vwap))grouped_price = (t.groupby(['block_dir','block_time']).apply(vwap))grouped_price.name = 'price'grouped_rest = t.groupby(['block_dir', 'block_time']).agg({'amount': 'sum','symbol': 'first','dt': 'first'})
  1. File "...\pyfolio\round_trips.py", line 77, in agg_all_long_short stats_all = (round_trips pandas.errors.SpecificationError: nested renamer is not supported

    改round_trips.py第77行

    stats_all = (round_trips.assign(ones=1).groupby('ones')[col].agg(list(stats_dict.items())).T.rename(columns={1.0: 'All trades'}))stats_long_short = (round_trips.groupby('long')[col].agg(list(stats_dict.items())).T.rename(columns={False: 'Short trades',True: 'Long trades'}))
  1. File "...\pyfolio\round_trips.py", line 393, in gen_round_trip_stats round_trips.groupby('symbol')['returns'].agg(RETURN_STATS).T pandas.errors.SpecificationError: nested renamer is not supported

    393行修改:

    stats['symbols'] = \round_trips.groupby('symbol')['returns'].agg(list(RETURN_STATS.items())).T
  1. ValueError: The number of FixedLocator locations (16), usually from a call to set_ticks, does not match the number of labels (3).

    注释掉tears.py文件的871行

画图运行

在Jupter notebook中运行,不建议直接console中运行,结果如图:


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/604596.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

车辆运动学方程推导和代码实现

文章目录 1. 运动学方程2. 模型实现 1. 运动学方程 自行车模型&#xff08;Bicycle Model&#xff09;是车辆数字化模型中最常见的一种运动学模型。其除了可以反映车辆的一些基础特性外&#xff0c;更重要的是简单易用。通常情况下我们会把车辆模型简化为二自由度的自行车模型…

游戏Lua调用01.lua的编译及测试

一、lua库下载与编译 进入lua官网 Lua: version history 找到lua5.1 选择lua5.1是因为大部分游戏使用的都是lua5.1的库&#xff0c;也可以选择高版本&#xff0c;影响不大 下载完了后使用vs建立一个静态库或者动态库的工程 这里以动态库为例子&#xff0c;静态库也是一样的…

flink table view datastream互转

case class outer(f1:String,f2:Inner) case class outerV1(f1:String,f2:Inner,f3:Int) case class Inner(f3:String,f4:Int) 测试代码 package com.yy.table.convertimport org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.tabl…

w18认证崩溃之暴力破解DVWA

一、实验环境 攻击工具&#xff1a;burpsuite2021.12 靶场&#xff1a;DVWA二、实验目的 演示暴破DVWA的medium和high两个级别&#xff0c;low级别请查看w18认证崩溃之暴力破解4种攻击模式 三、实验步骤 1.设置靶场medium级别 2.开启谷歌代理插件&#xff0c;开启bp拦截&…

AI教我学编程之AI自刀

AI教我学编程系列学习第二课 — C#变量类型 上节回顾知识梳理C#基本变量类型 对话AI分歧产生本段总结 它说得对吗&#xff1f;我随即发问经典AI自刀他来了 总结 上节回顾 在上一节中我们发现&#xff0c;AI工具似乎还不能达到教学的水平&#xff0c;所以在本节中&#xff0c;…

数据在内存中的存储方式

前言&#xff1a; 期末临近&#xff0c;继续复习&#xff01; 今天要复习的内容是数据在内存中的存储&#xff0c;主要是整型与浮点两种&#xff0c;还有大小端的介绍。 提出问题 打印结果是255 -1 为什么&#xff1f; 首先我们要知道数据都是以二进制的形式存…

Spring Framework和SpringBoot的区别

目录 一、前言 二、什么是Spring 三、什么是Spring Framework 四、什么是SpringBoot 五、使用Spring Framework构建工程 六、使用SpringBoot构建工程 七、总结 一、前言 作为Java程序员&#xff0c;我们都听说过Spring&#xff0c;也都使用过Spring的相关产品&#xff0…

uni-app 前后端调用实例 基于Springboot 详情页实现

锋哥原创的uni-app视频教程&#xff1a; 2023版uniapp从入门到上天视频教程(Java后端无废话版)&#xff0c;火爆更新中..._哔哩哔哩_bilibili2023版uniapp从入门到上天视频教程(Java后端无废话版)&#xff0c;火爆更新中...共计23条视频&#xff0c;包括&#xff1a;第1讲 uni…

mysql进阶-重构表

目录 1. 原因 2. 如何重构表呢&#xff1f; 2.1 命令1&#xff1a; 2.2 命令2&#xff1a; 2.3 命令3&#xff1a; 1. 原因 正常的业务开发&#xff0c;为什么需要重构表呢&#xff1f; 原因1&#xff1a;某张表存在大量的新增和删除操作&#xff0c;导致表经历过大量的…

JavaScript异常处理实战

前言 之前在对公司的前端代码脚本错误进行排查&#xff0c;试图降低 JS Error 的错误量&#xff0c;结合自己之前的经验对这方面内容进行了实践并总结&#xff0c;下面就此谈谈我对前端代码异常监控的一些见解。 本文大致围绕下面几点展开讨论&#xff1a; JS 处理异常的方式…

解决 Postman 报错问题:一份综合指南

Postman 是一个流行的 API 测试工具&#xff0c;它可以帮助开发者和测试人员快速地创建和发送各种 HTTP 请求&#xff0c;并查看响应结果。但是&#xff0c;在使用 Postman 的过程中&#xff0c;有时候会遇到一些报错或异常情况&#xff0c;影响了正常的测试流程。本文将介绍一…

图像分割-Grabcut法

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 本文的C#版本请访问&#xff1a;图像分割-Grabcut法(C#)-CSDN博客 GrabCut是一种基于图像分割的技术&#xff0c;它可以用于将图像…

循环队列的队空队满情况

有题目&#xff1a; 循环队列放在一维数组A[0....M-1]中&#xff0c;end1指向队头元素&#xff0c;end2指向队尾元素的后一个位置。假设队列两端均可进行入队和出队操作&#xff0c;队列中最多能容纳M-1个元素。初始时为空。下列判断队空和队满的条件中&#xff0c;正确的是 …

vim/vi 模式切换和常用快捷键

vim/vi 切换模式&#xff1a; vim/vi 常用快捷键&#xff1a; 一般模式&#xff1a; gg&#xff1a;文件开头、G&#xff1a;文件结尾 shift^ &#xff1a;光标当前行首、shift^&#xff1a;光标当前行尾 yy&#xff1a;复制、p&#xff1a;粘贴、dd&#xff1a;删除当前行、…

CRM的request管理笔记

1 request类型 request有两种&#xff0c;device request和link request。 link request link req是对link进行精确控制。 link req是对每个link的请求&#xff0c;比如某一帧是否需要bubble recovery、某一帧是否需要长曝光等feature。device request 对一个设备进行每帧控制…

JDK 11:崭新特性解析

JDK 11&#xff1a;崭新特性解析 JDK 11&#xff1a;崭新特性解析1. HTTP Client&#xff08;标准化&#xff09;示例代码 2. 局部变量类型推断的扩展示例代码 3. 新的字符串方法示例代码 4. 动态类文件常量示例代码 5. Epsilon 垃圾收集器使用方式 结语 JDK 11&#xff1a;崭新…

MySQL数据库进阶-事务

事务 事务由单独单元的一个或多个SQL语句组成&#xff0c;在这 个单元中&#xff0c;每个MySQL语句是相互依赖的。而整个单独单 元作为一个不可分割的整体&#xff0c;如果单元中某条SQL语句一 旦执行失败或产生错误&#xff0c;整个单元将会回滚。所有受到影 响的数据将返回到…

现有网络模型的使用及修改(VGG16为例)

VGG16 修改默认路径 import os os.environ[TORCH_HOME] rD:\Pytorch\pythonProject\vgg16 # 下载位置太大了&#xff08;140多G&#xff09;不提供直接下载 train_set torchvision.datasets.ImageNet(root./data_image_net, splittrain, downloadTrue, transformtorchvis…

Informer:用于长序列时间序列预测的高效Transformer模型

最近在研究时间序列分析的的过程看&#xff0c;看到一篇精彩的文章&#xff0c;名为&#xff1a;《Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting》&#xff0c;特此撰写一篇博客。 文章主要研究了一种用于长序列时间序列预测的高效Trans…

Windows:笔记本电脑设置休眠教程

前言 不知道大家在使用【Windows】笔记本有没有这个习惯&#xff0c;我会把他的电池选项的【休眠】设置进行打开。因为作为我们开发人员电脑一般是一周关一次机&#xff0c;有时候一个月关一次机。这时候【休眠】功能就给我们提供了一个好处&#xff0c;我们选择了【休眠】后电…