C++20新特性解析:深入探讨协程库的实现原理与应用

C++20新特性解析:深入探讨协程库的实现原理与应用

  • 一、C++20的协程库简介
  • 二、C++20协程基础知识
    • 2.1、协程的基本概念和使用方法
    • 2.2、C++20中的协程支持
    • 2.3、协程与传统线程的对比
  • 三、C++20协程库的实现原理
  • 四、C++20协程库的应用实例
  • 总结

一、C++20的协程库简介

C++20引入了对协程的支持,这是一项重要的编程语言特性,可以简化异步编程的实现而且提高代码的可读性和可维护性。协程可以在执行过程中暂停和恢复,能够更直观地表达异步操作的流程,让编程更加简洁和高效。

C++20的协程库提供了一组新的关键字、库函数和概念,能轻松地实现异步操作、事件驱动的编程模型和无阻塞式IO等。这些特性对于网络编程、并发编程和响应式编程都有很大的帮助。在C++20之前,一般都是使用第三方库或者自己实现协程功能,现在C++20的协程库为协程的使用提供了官方标准的支持,为C++编程带来了全新的可能性。

协程在异步编程中的重要性:

  1. 传统的异步编程方式(如回调、Promise等)会使代码结构复杂、难以理解和维护。而协程可以让异步代码看起来更像是同步代码,通过暂停和恢复来表达异步操作的逻辑。

  2. 协程可以大大简化异步代码的写法,避免回调地狱(callback hell)和层层嵌套的问题。

  3. 相较于传统的基于回调的异步编程方式,协程可以更高效地利用系统资源,减少上下文切换和线程调度的开销,提高程序的性能。

  4. 协程中的暂停和恢复让状态管理非常便利,更轻松地处理异步操作中的状态和上下文切换。

在这里插入图片描述

二、C++20协程基础知识

2.1、协程的基本概念和使用方法

协程是一种轻量级线程,它可以在不同的执行上下文中暂停和恢复。在协程中,程序可以通过显式的暂停和恢复操作来控制执行流程,能够更灵活地管理并发任务。

协程的基本概念:

  1. 暂停和恢复:协程可以在执行过程中暂停自己,并在之后的某个时间点恢复执行。这种暂停和恢复是由程序员显式地控制的,可以在任何地方发生。

  2. 轻量级线程:与传统的操作系统线程相比,协程更加轻量级,可以在同一个线程中并发执行多个协程,从而减少线程切换的开销。

  3. 异步编程:协程通常用于异步编程,可以在 I/O 操作和其他耗时的任务中进行暂停和恢复,提高程序的并发性能。

在C++20中,协程使用co_awaitco_yield等关键字来实现暂停和恢复操作。通过使用co_await可以将执行权交还给调用者,同时将当前状态保存起来。而co_yield用于向调用者返回一个值,同时也会暂停当前协程的执行。协程也需要一个可调用的函数作为入口点,称为协程函数。

示例:

#include <iostream>
#include <coroutine>
/*******************************************************************
* `promise_type`结构定义协程的状态和控制逻辑,
* `initial_suspend`和`final_suspend`用于定义协程的初始化和结束时的暂停行为。
* `get_return_object`方法返回一个`Generator`对象,
* `return_void`用于处理协程返回的结果,
* `yield_value`用于返回一个值并暂停协程的执行。
********************************************************************/
struct Generator {struct promise_type {int current_value;std::exception_ptr exception; // 用来存储异常指针// 初始挂起不做任何事情auto initial_suspend() { return std::suspend_always{}; }// 最终挂起销毁coroutineauto final_suspend() noexcept { return std::suspend_always{}; }Generator get_return_object() {return Generator{std::coroutine_handle<promise_type>::from_promise(*this)};}// 返回时不做任何事情void return_void() {}// 挂起并记下当前valueauto yield_value(int value) {current_value = value;return std::suspend_always{};}// 存储异常void unhandled_exception() { exception = std::current_exception(); }};std::coroutine_handle<promise_type> coro;explicit Generator(std::coroutine_handle<promise_type> h) : coro(h) {}~Generator() {// 解构时销毁coroutineif (coro)coro.destroy();}int getValue() {// 无异常时返回当前值,否则重新抛出异常if (coro.promise().exception)std::rethrow_exception(coro.promise().exception);return coro.promise().current_value;}bool next() { if (!coro.done()) {coro.resume();return !coro.done();}return false;}
};Generator counter() {for (int i = 0; i < 5; ++i)co_yield i;
}int main() {Generator gen = counter();while (gen.next()) {std::cout << gen.getValue() << std::endl;}return 0;
}

编译时一定要加上-std=c++20选项。

counter函数中使用co_yield将值返回给调用者,同时暂停协程的执行。在main函数通过Generator对象的next方法来依次取出协程返回的值,并输出到控制台。

这就是一般情况下C++中协程的基本概念和使用方法。

2.2、C++20中的协程支持

C++20中引入了对协程的原生支持,可以直接利用协程来编写异步程序。协程支持是通过引入一组新的关键字和库来实现的,包括co_awaitco_yieldco_return等关键字以及相关的标准库函数和类型。

关键字/库描述
co_await表示在异步操作完成前将控制权交给调用方
co_yield在协程中产生一个值并暂停执行
co_return表示协程执行结束并返回值
std::coroutine_handle一个用于控制协程句柄的类
std::suspend_always一个永远暂停的协程suspend点,通常用于展示示例以进行协程暂停和恢复的操作
std::suspend_never一个从不暂停的协程suspend点,通常用于展示示例以进行协程的初始和最终操作

C++20使用协程进行异步编程:

  1. 引入<coroutine>头文件,该头文件包括了与协程相关的标准库函数和类型;
  2. 在函数声明或定义中使用co_await关键字,表示在异步操作完成之前将控制权交给调用方;
  3. 使用co_yield关键字来在协程中产生一个值并暂停执行;
  4. 在协程的返回值上使用co_return关键字,表示协程执行结束并返回值。
执行到co_yield
执行到co_await
执行到co_return
开始
创建promise对象
创建协程对象
调用 resume() 方法
协程执行
执行到 co_yield 关键字
执行到 co_await 关键字
执行协程等待操作
等待操作完成
调用 resume() 方法继续执行
结束

示例:

#include <iostream>
#include <coroutine>// Define a struct named Task
struct Task {// Define a nested struct named promise_type for Taskstruct promise_type {// Return a default-constructed Task objectTask get_return_object() {return {};}// Suspend the coroutine indefinitely during its initial executionstd::suspend_never initial_suspend() {return {};}// Suspend the coroutine indefinitely at its final executionstd::suspend_never final_suspend() noexcept{return {};}// Terminate the program for unhandled exceptionsvoid unhandled_exception() {std::terminate();}// No action for coroutines returning voidvoid return_void() {}};~Task() { std::cout << "Task destroyed" << std::endl;}// Suspend the coroutine associated with the provided coroutine handlevoid await_suspend(std::coroutine_handle<promise_type>) {}
};// Create an asynchronous function named async
Task async() {std::cout << "Async start" << std::endl;// Suspend the coroutine until being resumed (in this case indefinitely)co_await std::suspend_always{};std::cout << "Async end" << std::endl;
}int main() {// Call the async function and store the resulting taskauto task = async();std::cout << "Main" << std::endl;return 0;
}

Task是一个协程类型,通过co_await来暂停执行,并在适当的时机恢复执行。async函数是一个协程函数,其中的co_await表示在异步操作完成前暂停执行。

输出:

Async start
Main
Task destroyed

2.3、协程与传统线程的对比

调度方式:

  • 传统线程是由操作系统的调度器进行管理和调度的,它们可以并行执行在不同的物理核心上。线程的调度和切换需要内核的介入,会消耗一定的系统资源。
  • 协程是由程序员显式地控制的,它们运行在单一线程内部,并且协程之间的切换必须经过协程函数的显式调用。协程的切换不需要内核介入,并且开销较小。

内存占用:

  • 传统线程需要分配一定的内核资源来进行管理,包括线程堆栈以及线程控制块等。因此,创建大量的线程可能会占用大量的内存。
  • 协程在不同协程之间的切换通常只需要保存少量的上下文信息,所以占用的内存较少。这也是协程在高并发的场景下具有优势。

编程模型:

  • 传统线程编程通常需要使用同步原语(例如互斥锁、条件变量)来处理共享资源的并发访问,这增加了编程的复杂度。
  • 协程可以使用异步方式编写,使用协程可以更自然地进行事件驱动的编程,避免了使用传统线程编程中的锁和条件变量。

并发粒度:

  • 传统线程通常用于在多核处理器上并行执行代码,适合于CPU密集型的任务。
  • 协程通常用于处理IO密集型的任务,如网络请求,文件读写等。它可以更高效地处理大量的并发IO操作。

三、C++20协程库的实现原理

协程运行流程图:
在这里插入图片描述

在底层实现中,编译器会将协程转换为状态机。每个协程包含了一组状态(比如挂起、运行、完成等),并且通过调度器进行相互切换。当协程暂停时,其状态会被保存下来,等待下一次被唤醒时恢复执行。这种状态机的设计是实现协程的核心。

编译器会生成一些额外的代码来管理协程的状态和上下文切换。协程需要进行频繁的挂起和恢复操作,因此涉及到堆栈和上下文的保存与恢复。编译器和标准库需要在底层处理这些操作,保证协程的状态能够正确地切换和保存。

协程调度器和协程对象的概念:

  1. 协程对象代表一个具体的协程实例,它包含了协程的状态、执行过程中的数据等信息。在C++20中使用co_awaitco_yield等关键字来定义协程函数,并创建对应的协程对象。

  2. 协程调度器负责协程的调度和管理,它决定了哪个协程处于运行状态,哪个协程被挂起或恢复。

协程调度器和协程对象的关系:

  • 协程对象依赖于协程调度器进行调度和管理。当一个协程对象需要暂停或者恢复执行时,它会通过协程调度器来进行相应的操作。

  • 协程对象通过协程调度器来执行,并且协程调度器会负责协程的挂起、恢复、调度等操作。

四、C++20协程库的应用实例

在异步IO操作中使用协程简化异步操作的编写,提高代码的可读性、可维护性和性能。

  • 协程将异步IO的回调地狱转换为顺序执行的代码,代码更易于理解和编写。
  • 在异步IO场景下,协程的轻量级和低开销的优势非常明显,可以降低上下文切换的开销,提高异步IO操作的性能和响应速度。
  • 自定义的协程调度器可以与异步IO操作结合,实现灵活的异步IO调度和管理。
  • C++20协程可以与现有的异步IO框架(如Boost.Asio、libuv等)结合,利用协程改善异步IO编程。

示例:使用C++20协程库(搭配Boost.Asio)来进行异步网络通信。

#include <iostream>
#include <boost/asio.hpp>
#include <boost/asio/use_awaitable.hpp>
#include <coroutine>
#include <boost/asio/awaitable.hpp>namespace net = boost::asio;
using tcp = boost::asio::ip::tcp;class AsyncTCPClient {
public:AsyncTCPClient(net::io_context& io_context): resolver_(io_context), socket_(io_context) {}// Asynchronous connection to the servernet::awaitable<void> connect(const std::string& host, unsigned short port) {auto results = co_await resolver_.async_resolve(host, std::to_string(port), net::use_awaitable);co_await net::async_connect(socket_, results, net::use_awaitable);}// Asynchronous write operationnet::awaitable<void> write(const std::string& data) {co_await net::async_write(socket_, net::buffer(data), net::use_awaitable);}// Asynchronous read operationnet::awaitable<std::string> read(int max_length) {std::string data;data.resize(max_length);size_t read_length = co_await socket_.async_read_some(net::buffer(data), net::use_awaitable);co_return data.substr(0, read_length);}private:tcp::resolver resolver_;tcp::socket socket_;
};int main() {net::io_context io_context;AsyncTCPClient client(io_context);co_spawn(io_context, [&client]() -> net::awaitable<void> {try {co_await client.connect("www.baidu.com", 80);co_await client.write("GET / HTTP/1.1\r\nHost: www.baidu.com\r\nConnection: close\r\n\r\n");std::string response = co_await client.read(1024);std::cout << "Received: " << response << std::endl;} catch (std::exception& e) {std::cerr << "Exception: " << e.what() << std::endl;}}, net::detached);io_context.run();return 0;
}

要先安装boost库。

sudo apt-get install libboost-all-dev

编译:

g++ -std=c++20 -lboost_system -lboost_coroutine -lboost_context -pthread testp.cc -o testp

输出:

Received: HTTP/1.1 200 OK
Accept-Ranges: bytes
Cache-Control: no-cache
Content-Length: 9508
Content-Type: text/html
Date: Sun, 07 Jan 2024 06:15:56 GMT
P3p: CP=" OTI DSP COR IVA OUR IND COM "
P3p: CP=" OTI DSP COR IVA OUR IND COM "
Pragma: no-cache
Server: BWS/1.1
Set-Cookie: BAIDUID=84A68B6C381FF605A97D9FCB3889B2E7:FG=1; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
Set-Cookie: BIDUPSID=84A68B6C381FF605A97D9FCB3889B2E7; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
Set-Cookie: PSTM=1704608156; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
Set-Cookie: BAIDUID=84A68B6C381FF6058825F825739832C9:FG=1; max-age=31536000; expires=Mon, 06-Jan-25 06:15:56 GMT; domain=.baidu.com; path=/; version=1; comment=bd
Traceid: 1704608156352853428210666740912840254115
Vary: Accept-Encoding
X-Ua-Compatible: IE=Edge,chrome=1
Connection: close<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content="te

总结

未来的C++标准可能会继续完善和扩展协程库,包括新增更多的协程相关工具、函数和语法糖,来满足更广泛的并发编程需求。未来会有更好的编译器支持,包括优化协程性能、提供更丰富的调试信息等。

C++20协程库会推动标准化并发编程模式,包括并发任务调度、异步操作、协同执行等,未来会进一步整合协程库与其他标准库,比如网络库、文件系统库等,提供更完整的异步操作和并发编程支持。

除了简单的协程机制,未来也会有更丰富的并发编程模型,比如actor模型、数据流编程模型等。也会进一步优化协程的性能,包括降低协程的开销、提高协程的并发性能等,以提供更高效的并发编程支持。

参考文献:

  • 【Google “战败”后,C++20 用微软的提案进入协程时代!】
  • 【基于C++20协程库封装的开源框架】
  • 【协程 (C++20)官方文档】

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/603878.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

特种印制电路技术

1特种印制电路技术现状、分类及特点 2006年&#xff0c;信息产业部(现工信部)电子信息产品管理司将高档PCB产品类型概括为HDI板、多层FPC、刚挠结合板、IC载板、通信背板、特种板材印制板、印制板新品种等种类。但直至目前&#xff0c;在印制电路设计与制造领域还没有形成特种…

软件测试|深入理解SQL RIGHT JOIN:语法、用法及示例解析

引言 在SQL中&#xff0c;JOIN是一种重要的操作&#xff0c;用于将两个或多个表中的数据关联在一起。SQL提供了多种JOIN类型&#xff0c;其中之一是RIGHT JOIN。RIGHT JOIN用于从右表中选择所有记录&#xff0c;并将其与左表中匹配的记录组合在一起。本文将深入探讨SQL RIGHT …

Python Selenium常见的报错以及措施

Python Selenium的常见报错主要包括以下几种&#xff1a; 1. NoSuchElementException: 当Selenium无法在DOM中找到元素时&#xff0c;会抛出此异常。这通常是因为元素不存在或者页面还未完全加载。 解决方法&#xff1a; 显式等待 隐式等待 越快越慢&#xff0c;越慢越快&#…

C#,冒泡排序算法(Bubble Sort)的源代码与数据可视化

排序算法是编程的基础。 常见的四种排序算法是&#xff1a;简单选择排序、冒泡排序、插入排序和快速排序。其中的快速排序的优势明显&#xff0c;一般使用递归方式实现&#xff0c;但遇到数据量大的情况则无法适用。实际工程中一般使用“非递归”方式实现。本文搜集发布四种算法…

嵌入式培训机构四个月实训课程笔记(完整版)-Linux系统编程第二天-Linux开发板外设练习题(物联技术666)

更多配套资料CSDN地址:点赞+关注,功德无量。更多配套资料,欢迎私信。 物联技术666_嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记-CSDN博客物联技术666擅长嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记,等方面的知识,物联技术666关注机器学习,arm开发,物联网,嵌入式硬件,单片机…

并发(6)

目录 31.JUC框架包含几个部分&#xff1f; 32.Lock框架和Tools包含哪些核心的类&#xff1f; 33.JUC原子类有哪些核心的类&#xff1f; 34.JUC线程池有哪些核心的类&#xff1f; 35.线程安全的实现方法有哪些&#xff1f; 31.JUC框架包含几个部分&#xff1f; 主要包含&am…

SpringCloud-高级篇(十三)

前面的主从集群可以应对Redis高并发读的问题&#xff0c;Redis主从之间可以做同步&#xff0c;为了提高主从同步时的性能&#xff0c;单节点Redis的内存不要设置太高&#xff0c;如果内存占用过多&#xff0c;做RDB的持久化&#xff0c;或者做全量同步的时候&#xff0c;导致大…

LDD学习笔记 -- Linux错误码

LDD学习笔记 -- Linux错误码 EACCES(Permission Denied) 13EEXIST(File Exits) 17EINVAL(Invalid Argument) 22ENOENT(No Such File or Directory)ENOMEM(Out of Memory)EIO(Input/Output Error) 5ENOSPC(No space Left on Device)ENOTTY(Not a Typewrite)EPIPE(Broken Pipe)EI…

使用邮箱发送验证码前端完成登录

前言 在前一篇使用C#发送邮箱验证码已经完成使用.net core web api写了完成往登录邮箱发送验证码的接口。现在就用前端调用接口模拟登录功能。 接口 public class ApiResp{public bool Success { get; set; }public int Code { get; set; }public int count { get; set; }pu…

元数据管理平台对比预研 Atlas VS Datahub VS Openmetadata

大家好&#xff0c;我是独孤风。元数据管理平台层出不穷&#xff0c;但目前主流的还是Atlas、Datahub、Openmetadata三家&#xff0c;那么我们该如何选择呢&#xff1f; 本文就带大家对比一下,这三个平台优势劣势。要了解元数据管理平台&#xff0c;先要从架构说起。 正文共&am…

【北邮国院大四上】Business Technology Strategy 企业技术战略

北邮国院电商大四在读&#xff0c;本笔记仅为PPT内容的整理与翻译&#xff0c;并不代表本课程的考纲及重点&#xff0c;仅为本人复习时方便阅读与思考之作。 写在前面 大家好&#xff0c;欢迎来到大学期间的最后一门课程&#xff0c;本门课程是中方课&#xff0c;所以很庆幸的…

【Apollo】阿波罗使用占位符 #{} 的异常分析

文章目录 1. 前言2. 复现3. 分析3.1 Value 注解3.2 根因 4. 后记5. 参考资料 1. 前言 出于线上 hotfix 报文请求模板的考虑&#xff0c;新增一个阿波罗配置&#xff0c;取值形如&#xff1a; 发布配置一段时间后&#xff0c;刚好需要重启服务&#xff0c;最终造成服务宕机&a…

在Ubuntu22.04上安装WordPress

WordPress是当今最简单、最强大的博客和网站建设工具。据统计全球大约有40% 以上网站是使用WordPress&#xff0c;这是个巨大的数字也侧面证明了WordPress的强大和普遍性。因此&#xff0c;如果你正在寻找一款高效、实用、可靠的CMS工具来构建网站&#xff0c;那么WordPress无疑…

关于HAL库外部中断的开关流程

通过HAL库配置好外部中断后&#xff0c;会生成如下代码&#xff1a; static void MX_GPIO_Init(void) {GPIO_InitTypeDef GPIO_InitStruct {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 *//* GPIO Ports Clock Enable */__HAL_RCC_GPIOD_CLK_…

self-attention(上)李宏毅

B站视频链接 word embedding https//www.youtube.com/watch?vX7PH3NuYW0Q self-attention处理整个sequence&#xff0c;FC专注处理某一个位置的资讯&#xff0c;self-attention和FC可以交替使用。 transformer架构 self-attention的简单理解 a1-a4可能是input也可以作为中…

如何把电脑中的项目快速传进Github中?

一、打开GitHub网站:https:github.com 登录自己的个人账号 1.新建一个项目 2.用鼠标直接拖拽电脑中的项目文件夹与文件到新创建的项目中点击保存即可。

JS手写apply,call,bind函数

本篇文章咱们来手写简易版的apply&#xff0c;call&#xff0c;bind函数。 实现思路 首先咱们需要思考下这三个函数放到哪里比较合适&#xff0c;因为这三个函数是被函数对象调用的&#xff0c;并且每个函数都可以调用&#xff0c;所以不难想到有一个位置非常合适&#xff0c;…

springboot第47集:【思维导图】面向对象,关键字,标识符,变量,数组的使用...

关键字&#xff1a;class,public,static,void等&#xff0c;特点是全部关键字都是小写字母。 image.png image.png 凡是自己起的名字可以叫标识符 image.png image.png image.png image.png 整数类型的使用 image.png image.png image.png 浮点类型 image.png image.png 字符类…

用队列实现栈oj题——225

. 个人主页&#xff1a;晓风飞 专栏&#xff1a;LeetCode刷题|数据结构|Linux 路漫漫其修远兮&#xff0c;吾将上下而求索 文章目录 题目要求&#xff1a;实现 MyStack 类&#xff1a;注意&#xff1a;示例&#xff1a;解释&#xff1a;提示&#xff1a; 解题核心数据结构的定义…

ASP.NET Core基础之图片文件(二)-WebApi图片文件上传到文件夹

阅读本文你的收获&#xff1a; 了解WebApi项目保存上传图片的三种方式学习在WebApi项目中如何上传图片到指定文件夹中 在ASP.NET Core基础之图片文件(一)-WebApi访问静态图片文章中&#xff0c;学习了如何获取WebApi中的静态图片&#xff0c;本文继续分享如何上传图片。 那么…