大创项目推荐 深度学习图像分类算法研究与实现 - 卷积神经网络图像分类

文章目录

  • 0 前言
  • 1 常用的分类网络介绍
    • 1.1 CNN
    • 1.2 VGG
    • 1.3 GoogleNet
  • 2 图像分类部分代码实现
    • 2.1 环境依赖
    • 2.2 需要导入的包
    • 2.3 参数设置(路径,图像尺寸,数据集分割比例)
    • 2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)
    • 2.5 数据预处理
    • 2.6 训练分类模型
    • 2.7 模型训练效果
    • 2.8 模型性能评估
  • 3 1000种图像分类
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像分类算法研究与实现 - 卷积神经网络图像分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 常用的分类网络介绍

1.1 CNN

传统CNN包含卷积层、全连接层等组件,并采用softmax多类别分类器和多类交叉熵损失函数。如下图:

在这里插入图片描述

  • 卷积层(convolution layer): 执行卷积操作提取底层到高层的特征,发掘出图片局部关联性质和空间不变性质。

  • 池化层(pooling layer): 执行降采样操作。通过取卷积输出特征图中局部区块的最大值(max-pooling)或者均值(avg-pooling)。降采样也是图像处理中常见的一种操作,可以过滤掉一些不重要的高频信息。

  • 全连接层(fully-connected layer,或者fc layer): 输入层到隐藏层的神经元是全部连接的。

  • 非线性变化: 卷积层、全连接层后面一般都会接非线性变化层,例如Sigmoid、Tanh、ReLu等来增强网络的表达能力,在CNN里最常使用的为ReLu激活函数。

  • Dropout : 在模型训练阶段随机让一些隐层节点权重不工作,提高网络的泛化能力,一定程度上防止过拟合

在CNN的训练过程总,由于每一层的参数都是不断更新的,会导致下一次输入分布发生变化,这样就需要在训练过程中花费时间去设计参数。在后续提出的BN算法中,由于每一层都做了归一化处理,使得每一层的分布相对稳定,而且实验证明该算法加速了模型的收敛过程,所以被广泛应用到较深的模型

1.2 VGG

VGG 模型是由牛津大学提出的(19层网络),该模型的特点是加宽加深了网络结构,核心是五组卷积操作,每两组之间做Max-
Pooling空间降维。同一组内采用多次连续的3X3卷积,卷积核的数目由较浅组的64增多到最深组的512,同一组内的卷积核数目是一样的。卷积之后接两层全连接层,之后是分类层。该模型由于每组内卷积层的不同主要分为
11、13、16、19 这几种模型

在这里插入图片描述

增加网络深度和宽度,也就意味着巨量的参数,而巨量参数容易产生过拟合,也会大大增加计算量。

1.3 GoogleNet

GoogleNet模型由多组Inception模块组成,模型设计借鉴了NIN的一些思想.

NIN模型特点:

  • 1. 引入了多层感知卷积网络(Multi-Layer Perceptron Convolution, MLPconv)代替一层线性卷积网络。MLPconv是一个微小的多层卷积网络,即在线性卷积后面增加若干层1x1的卷积,这样可以提取出高度非线性特征。
    
  • 2)设计最后一层卷积层包含类别维度大小的特征图,然后采用全局均值池化(Avg-Pooling)替代全连接层,得到类别维度大小的向量,再进行分类。这种替代全连接层的方式有利于减少参数。

Inception 结构的主要思路是怎样用密集成分来近似最优的局部稀疏结构。

在这里插入图片描述

2 图像分类部分代码实现

2.1 环境依赖

python 3.7
jupyter-notebook : 6.0.3
cudatoolkit 10.0.130
cudnn 7.6.5
tensorflow-gpu 2.0.0
scikit-learn 0.22.1
numpy
cv2
matplotlib

2.2 需要导入的包

  import osimport cv2import numpy as npimport pandas as pdimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers,modelsfrom tensorflow.keras.models import Sequentialfrom tensorflow.keras.optimizers import Adamfrom tensorflow.keras.callbacks import Callbackfrom tensorflow.keras.utils import to_categoricalfrom tensorflow.keras.applications import VGG19from tensorflow.keras.models import load_modelimport matplotlib.pyplot as pltfrom sklearn.preprocessing import label_binarizetf.compat.v1.disable_eager_execution()os.environ['CUDA_VISIBLE_DEVICES'] = '0' #使用GPU

2.3 参数设置(路径,图像尺寸,数据集分割比例)

 preprocessedFolder = '.\\ClassificationData\\' #预处理文件夹outModelFileName=".\\outModelFileName\\" ImageWidth = 512ImageHeight = 320ImageNumChannels = 3TrainingPercent = 70  #训练集比例ValidationPercent = 15 #验证集比例

2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)

def read_dl_classifier_data_set(preprocessedFolder):num = 0  # 图片的总数量cnt_class = 0  #图片所属的类别label_list = []  # 存放每个图像的label,图像的类别img_list = []   #存放图片数据for directory in os.listdir(preprocessedFolder):tmp_dir = preprocessedFolder + directorycnt_class += 1for image in os.listdir(tmp_dir):num += 1tmp_img_filepath = tmp_dir + '\\' + imageim = cv2.imread(tmp_img_filepath)  # numpy.ndarrayim = cv2.resize(im, (ImageWidth, ImageHeight))  # 重新设置图片的大小img_list.append(im)label_list.append(cnt_class)  # 在标签中添加类别print("Picture " + str(num) + "Load "+tmp_img_filepath+"successfully")
print("共有" + str(num) + "张图片")
print("all"+str(num)+"picturs belong to "+str(cnt_class)+"classes")
return np.array(img_list),np.array(label_list)all_data,all_label=read_dl_classifier_data_set(preprocessedFolder)

在这里插入图片描述

2.5 数据预处理

图像数据压缩, 标签数据进行独立热编码one-hot

def preprocess_dl_Image(all_data,all_label):all_data = all_data.astype("float32")/255  #把图像灰度值压缩到0--1.0便于神经网络训练all_label = to_categorical(all_label)  #对标签数据进行独立热编码return all_data,all_labelall_data,all_label = preprocess_dl_Image(all_data,all_label) #处理后的数据

对数据及进行划分(训练集:验证集:测试集 = 0.7:0.15:0.15)

def split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent):s = np.arange(all_data.shape[0])np.random.shuffle(s)  #随机打乱顺序all_data = all_data[s] #打乱后的图像数据all_label = all_label[s] #打乱后的标签数据all_len = all_data.shape[0]train_len = int(all_len*TrainingPercent/100)  #训练集长度valadation_len = int(all_len*ValidationPercent/100)#验证集长度temp_len=train_len+valadation_lentrain_data,train_label = all_data[0:train_len,:,:,:],all_label[0:train_len,:] #训练集valadation_data,valadation_label = all_data[train_len:temp_len, : , : , : ],all_label[train_len:temp_len, : ] #验证集test_data,test_label = all_data[temp_len:, : , : , : ],all_label[temp_len:, : ] #测试集return train_data,train_label,valadation_data,valadation_label,test_data,test_labeltrain_data,train_label,valadation_data,valadation_label,test_data,test_label=split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent)

2.6 训练分类模型

  • 使用迁移学习(基于VGG19)

  • epochs = 30

  • batch_size = 16

  • 使用 keras.callbacks.EarlyStopping 提前结束训练

    def train_classifier(train_data,train_label,valadation_data,valadation_label,lr=1e-4):conv_base = VGG19(weights='imagenet',include_top=False,input_shape=(ImageHeight, ImageWidth, 3) )  model = models.Sequential()model.add(conv_base)model.add(layers.Flatten())model.add(layers.Dense(30, activation='relu')) model.add(layers.Dense(6, activation='softmax')) #Dense: 全连接层。activation: 激励函数,‘linear’一般用在回归任务的输出层,而‘softmax’一般用在分类任务的输出层conv_base.trainable=Falsemodel.compile(loss='categorical_crossentropy',#loss: 拟合损失方法,这里用到了多分类损失函数交叉熵  optimizer=Adam(lr=lr),#optimizer: 优化器,梯度下降的优化方法 #rmspropmetrics=['accuracy'])model.summary() #每个层中的输出形状和参数。early_stoping =tf.keras.callbacks.EarlyStopping(monitor="val_loss",min_delta=0,patience=5,verbose=0,baseline=None,restore_best_weights=True)history = model.fit(train_data, train_label,batch_size=16, #更新梯度的批数据的大小 iteration = epochs / batch_size,epochs=30,  # 迭代次数validation_data=(valadation_data, valadation_label),  # 验证集callbacks=[early_stoping])return model,history
    model,history = train_classifier(train_data,train_label,valadation_data,valadation_label,)
    

在这里插入图片描述

2.7 模型训练效果

def plot_history(history):history_df = pd.DataFrame(history.history)history_df[['loss', 'val_loss']].plot()plt.title('Train and valadation loss')history_df = pd.DataFrame(history.history)history_df[['accuracy', 'val_accuracy']].plot()plt.title('Train and valadation accuracy')plot_history(history)

在这里插入图片描述

2.8 模型性能评估

  • 使用测试集进行评估

  • 输出分类报告和混淆矩阵

  • 绘制ROC和AUC曲线

    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import accuracy_score
    import seaborn as sns
    Y_pred_tta=model.predict_classes(test_data) #模型对测试集数据进行预测
    Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
    Y_pred_tta=model.predict_classes(test_data) #模型对测试集进行预测
    Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
    print('验证集分类报告:\n',classification_report(Y_test,Y_pred_tta))
    confusion_mc = confusion_matrix(Y_test,Y_pred_tta)#混淆矩阵
    df_cm = pd.DataFrame(confusion_mc)
    plt.figure(figsize = (10,7))
    sns.heatmap(df_cm, annot=True, cmap="BuPu",linewidths=1.0,fmt="d")
    plt.title('PipeLine accuracy:{0:.3f}'.format(accuracy_score(Y_test,Y_pred_tta)),fontsize=20)
    plt.ylabel('True label',fontsize=20)
    plt.xlabel('Predicted label',fontsize=20)
    

在这里插入图片描述

在这里插入图片描述

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_curve
from sklearn import metrics
import matplotlib as mpl# 计算属于各个类别的概率,返回值的shape = [n_samples, n_classes]
y_score = model.predict_proba(test_data)
# 1、调用函数计算验证集的AUC 
print ('调用函数auc:', metrics.roc_auc_score(test_label, y_score, average='micro'))
# 2、手动计算验证集的AUC
#首先将矩阵test_label和y_score展开,然后计算假正例率FPR和真正例率TPR
fpr, tpr, thresholds = metrics.roc_curve(test_label.ravel(),y_score.ravel())
auc = metrics.auc(fpr, tpr)
print('手动计算auc:', auc)
mpl.rcParams['font.sans-serif'] = u'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
#FPR就是横坐标,TPR就是纵坐标
plt.figure(figsize = (10,7))
plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
plt.xlim((-0.01, 1.02))
plt.ylim((-0.01, 1.02))
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=16)
plt.ylabel('True Positive Rate', fontsize=16)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title('37个验证集分类后的ROC和AUC', fontsize=18)
plt.show()

在这里插入图片描述

3 1000种图像分类

这是学长训练的能识别1000种类目标的图像分类模型,演示效果如下

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/601422.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ssm基于JSP的网络游戏交易系统的设计与实现+jsp论文

摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理,然而,随着近些年信息技术的迅猛发展,让许多比较老套的信息管理模式进行了更新迭代,商品管理信息因为其管理内容繁杂,管理数量繁多导致手工进行处理不能满足…

面试题理解深层次的数组名

目录 引言 一:一维数组 举例如下 1.铺垫知识 数组名是数组首元素的地址,但是有两个特殊情况 (1)sizeof(数组名) (2)&数组名 2.分析讲解上述代码结果 2.字符数组 举例一如下 1.知识铺垫 …

(三)其他的输入输出

文章目录 getchar();单个字符输入使用: putchar();单个字符输出(自带换行)使用 puts();字符串输出与printf区别使用 gets();后面补充 代码现象 getchar(); 单个字符输入 使用: 变量 getchar(); 例:char a; a getchar(); put…

软件测试之单元测试、系统测试、集成测试知识总结

一、单元测试的概念 单元测试是对软件基本组成单元进行的测试,如函数或一个类的方法。当然这里的基本单元不仅仅指的是一个函数或者方法,有可能对应多个程序文件中的一组函数。 单元也具有一些基本的属性。比如:明确的功能、规格定义&#…

PHP进阶-实现网站的QQ授权登录

授权登录是站点开发常见的应用场景,通过社交媒体一键授权可以跳过注册站点账户的繁琐操作。本文将讲解如何用PHP实现QQ授权登录。首先,我们需要申请QQ互联开发者账号获得APPID和密钥;接着,我们下载QQ官方SDK:PHP SDK v…

IP地址定位技术的应用及其重要性

随着网络技术的快速发展,网络安全问题日益凸显,IP地址定位技术在网络安全领域的应用也越来越广泛。本文将介绍IP地址定位技术在网络安全领域的应用及其重要性。 一、IP地址定位技术概述 IP地址定位技术是指通过一定的技术手段,将虚拟网络中的…

关于《码农翻身》一书的读后感以及自己的一些拙见汇总

书籍名称 《码农翻身》 | 刘欣(码农翻身) 著 | 文章将以问答的形式进行叙述 1.是从什么渠道接触到《码农翻身》的 一个工作日的下午,手上的任务基本结束,翻了翻桌上的书和笔记之类的,同事见我在看书,于是向…

阿里后端实习一面面经

阿里后端实习一面面经 项目中使用到了es,es的作用? elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容 es中的重要概念? 群集:一个或多个节点…

PostgreSQL的常见错误和解决方法

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 在学习新的东西时,会犯很多的错误,会遇到很多坑。我们在填坑与犯错中不断进步成长。 以下是在学习pgsql中…

Pytorch详细安装过程

1、安装anaconda 官网(https://www.anaconda.com/products/distribution#Downloads)下载,使用管理员身份运行(不使用似乎也没事) 这里选择Just me(至于为啥,咱也不是很清楚) 更改路…

编程基础 - 初识shell

编程基础 - 初识shell 返回序言及专栏目录 文章目录 编程基础 - 初识shell前言一、Linux的路径1、绝对路径2、相对路径3、特殊路径 二、交互式工作1、先联系上shell2、交互式命令 三、执行脚本四、sh和bash的区别总结 前言 shell是Linux内核外的一层壳,是用户与Li…

大数据 MapReduce如何让数据完成一次旅行?

专栏上一期我们聊到MapReduce编程模型将大数据计算过程切分为Map和Reduce两个阶段,先复习一下,在Map阶段为每个数据块分配一个Map计算任务,然后将所有map输出的Key进行合并,相同的Key及其对应的Value发送给同一个Reduce任务去处理…

数据库设计-DDL

D D L \huge{DDL} DDL DDL:数据库定义语言,用来定义数据对象(数据库、表) 简单操作 首先在cmd中进行操作,登录数据库 show databases; -- 以列表的形式显示所有的数据库create database [if not exists] 数据库名称…

[C#]使用DlibDotNet人脸检测人脸68特征点识别人脸5特征点识别人脸对齐人脸比对FaceMesh

【官方框架地址】 https://github.com/takuya-takeuchi/DlibDotNet 【算法介绍】 DlibDotNet是一个开源的.NET库,用于实现机器学习和计算机视觉应用。它基于C库dlib,通过C/CLI封装了dlib的所有功能,为.NET开发者提供了简单易用的API。以下是…

Nacos 持久化及集群的搭建【微服务】

文章目录 一、统一配置管理二、微服务配置拉取三、配置热更新四、多环境共享配置五、Nacos 集群搭建1. 集群结构2. 初始化数据库3. 搭建集群 六、Nginx 反向代理七、启动项目测试 一、统一配置管理 案例练习的时候我们只有两个微服务,管理起来非常简单,但…

el-upload上传文件

需求:选中或拖拽文件后,使用http-request属性实现自动上传,并根据后端传回来的结果显示错误和控制fileList的显示,如果后端返回成功,则文件显示在文件列表处,如果后端返回失败,则文件列表不显示…

Qt/QML编程学习之心得:Timer的使用(22)

Qt中timer计时器如何使用? Timer的创建: void InitTimer(){myTimer = new QTimer(q);myTimer->setInterval(100); // 100msmyTimer->setSingleShot(true); //只运行一次的计时器QObject::connect(myTimer,SIGNAL(timeout()),q,SLOT(onTimeOut()));myTimer->start(…

Oracle分区表

文章目录 A. varchar2类型时间字段(20240102)分区实战1. 表要不要分区2. 将已经存在的表改造为分区表(时间字段,varchar2类型)3. 增加分区3.1 增加分区3.2 置换分区,不会复制索引,不要用这种语法建表,这是专门为置换分区用的3.3 分…

SonarQube 漏洞扫描

SonarQube 漏洞扫描 一、部署服务 1.1 docker方式部署 #安装docker curl -L download.beyourself.org.cn/shell-project/os/get-docker-latest.sh | sh yum install -y docker-compose #进去输入:set paste可以保证不穿行 [rootlocalhost sonar]# vim docker-compose.yml v…

java基于SSM的游戏商城的设计与实现论文

基于SSM的游戏商城的设计与实现 摘 要 当下,正处于信息化的时代,许多行业顺应时代的变化,结合使用计算机技术向数字化、信息化建设迈进。以前相关行业对于游戏信息的管理和控制,采用人工登记的方式保存相关数据,这种以…