<C++> STL_list

1.list的介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向 其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

2.list的使用

在学过vector接口后,list接口的使用也就非常容易了。大同小异!

构造函数

一、默认构造函数:

std::list<int> myList; // 创建一个空的整数链表

二、带有初始元素的构造函数:

std::list<int> myList = {1, 2, 3, 4, 5}; // 创建一个包含初始元素的整数链表

三、拷贝构造函数:

std::list<int> originalList = {1, 2, 3};
std::list<int> copiedList(originalList); // 通过拷贝构造函数创建一个与原链表相同的新链表

四、范围构造函数:

std::vector<int> vec = {1, 2, 3, 4, 5};
std::list<int> myList(vec.begin(), vec.end()); // 从一个范围内的元素创建链表

五、构造函数指定元素个数和值:

std::list<int> myList(5, 42); // 创建一个包含5个值为42的元素的链表

六、使用自定义分配器的构造函数:

std::allocator<int> myAllocator;
std::list<int, std::allocator<int>> myList(myAllocator); // 创建一个使用自定义分配器的链表

operator=

 list& operator= (const list& x);
#include <iostream>
#include <list>int main() {std::list<int> sourceList = {1, 2, 3, 4, 5};std::list<int> targetList;// 使用赋值运算符将源链表赋值给目标链表targetList = sourceList;// 输出目标链表的内容for (const auto& value : targetList) {std::cout << value << " ";}return 0;
}

迭代器

  1. 获取迭代器:
    • begin(): 返回指向链表第一个元素的迭代器。
    • end(): 返回指向链表尾部后一个元素的迭代器(并不指向有效元素)。
  2. 反向迭代器:
    • rbegin(): 返回指向链表最后一个元素的反向迭代器。
    • rend(): 返回指向链表头部前一个元素的反向迭代器(并不指向有效元素)。
  3. 迭代器移动操作:
    • ++iterator: 将迭代器移动到下一个元素。
    • --iterator: 将迭代器移动到前一个元素。
  4. 解引用迭代器:
    • *iterator: 获取迭代器指向的元素的值。
    • ->: 如果链表元素是对象,可以使用箭头运算符访问对象的成员。

正向迭代器遍历链表:

#include <iostream>
#include <list>int main() {std::list<int> myList = {1, 2, 3, 4, 5};// 使用迭代器遍历链表并输出元素for (std::list<int>::iterator it = myList.begin(); it != myList.end(); ++it) {std::cout << *it << " ";}// 使用 C++11 范围循环进行遍历(更简洁的方式)for (const int& value : myList) {std::cout << value << " ";}return 0;
}

反向迭代器遍历链表:

#include <iostream>
#include <list>int main() {std::list<int> myList = {1, 2, 3, 4, 5};// 使用反向迭代器遍历链表并输出元素for (std::list<int>::reverse_iterator rit = myList.rbegin(); rit != myList.rend(); ++rit) {std::cout << *rit << " ";}return 0;
}

注意: 由于 list 是双向链表,迭代器支持前进和后退操作,但不支持随机访问。

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

capacity

  • size():返回链表中的元素数量。
std::list<int> myList = {1, 2, 3, 4, 5};
std::cout << "Size of the list: " << myList.size() << std::endl;
  • empty():检查链表是否为空。
if (myList.empty()) {std::cout << "The list is empty." << std::endl;
} else {std::cout << "The list is not empty." << std::endl;
}
  • max_size():返回 std::list 可以容纳的最大元素数量,考虑到系统的限制。
std::cout << "Maximum size of the list: " << myList.max_size() << std::endl;
  • resize(size_type n)resize(size_type n, const T& value):改变链表的大小。第一个版本使用默认构造函数添加或移除元素,第二个版本将指定的值用作添加的元素值。
myList.resize(10);         // 默认构造函数添加元素
myList.resize(8, 42);      // 使用值 42 添加元素

resize的两种情况:

  1. 当所给值大于当前的size时,将size扩大到该值,扩大的数据为第二个所给值,若未给出,则默认为容器所存储类型的默认构造函数所构造出来的值。
  2. 当所给值小于当前的size时,将size缩小到该值。

element access

  • front():返回链表的第一个元素的引用。
std::list<int> myList = {1, 2, 3, 4, 5};
int firstElement = myList.front(); // 获取第一个元素的值
  • back():返回链表的最后一个元素的引用。
std::list<int> myList = {1, 2, 3, 4, 5};
int lastElement = myList.back(); // 获取最后一个元素的值

Modifiers

  • assign(): 用新的元素替换链表中的元素。
std::list<int> myList;
myList.assign({1, 2, 3, 4, 5}); // 用新元素替换现有元素
  • push_back(): 在链表末尾添加一个元素。
std::list<int> myList = {1, 2, 3};
myList.push_back(4); // 在末尾添加元素4
  • pop_back(): 移除链表末尾的元素。
std::list<int> myList = {1, 2, 3, 4};
myList.pop_back(); // 移除最后一个元素
  • push_front(): 在链表开头添加一个元素。
std::list<int> myList = {2, 3, 4};
myList.push_front(1); // 在开头添加元素1
  • pop_front(): 移除链表开头的元素。
std::list<int> myList = {1, 2, 3, 4};
myList.pop_front(); // 移除第一个元素
  • insert(): 在指定位置插入一个或多个元素。
std::list<int> myList = {1, 2, 5};
std::list<int>::iterator it = std::next(myList.begin()); // 获取第二个元素的迭代器
myList.insert(it, 3); // 在第二个位置插入元素3
  • erase(): 移除指定位置的一个或多个元素。
std::list<int> myList = {1, 2, 3, 4, 5};
std::list<int>::iterator it = std::next(myList.begin(), 2); // 获取第三个元素的迭代器
myList.erase(it); // 移除第三个元素
  • clear(): 移除所有链表中的元素,使其变为空链表。
std::list<int> myList = {1, 2, 3, 4, 5};
myList.clear(); // 清空链表中的所有元素
  • swap() :用于交换两个链表的内容
std::list<int> list1 = {1, 2, 3};
std::list<int> list2 = {4, 5, 6};
list1.swap(list2); // 交换两个链表的内容

Operations

  • remove(): 移除链表中等于指定值的所有元素。
std::list<int> myList = {1, 2, 2, 3, 4, 2, 5};
myList.remove(2); // 移除所有值为2的元素
  • sort(): 对链表中的元素进行排序。
std::list<int> myList = {3, 1, 4, 1, 5, 9, 2, 6};
myList.sort(); // 对元素进行升序排序
  • reverse(): 反转链表中的元素顺序。
std::list<int> myList = {1, 2, 3, 4, 5};
myList.reverse(); // 反转元素的顺序,变为 {5, 4, 3, 2, 1}
  • merge(): 合并两个已排序的链表。合并后的list容器仍然有序
std::list<int> list1 = {1, 3, 5};
std::list<int> list2 = {2, 4, 6};
list1.merge(list2); // 合并两个已排序的链表
  • unique(): 移除链表中的重复元素(连续重复的元素只保留一个)。
std::list<int> myList = {1, 2, 2, 3, 3, 3, 4, 5, 5};
myList.unique(); // 移除连续重复的元素,变为 {1, 2, 3, 4, 5}

splice

splice函数用于两个list容器之间的拼接,其有三种拼接方式:

  1. 将整个容器拼接到另一个容器的指定迭代器位置。
  2. 将容器当中的某一个数据拼接到另一个容器的指定迭代器位置。
  3. 将容器指定迭代器区间的数据拼接到另一个容器的指定迭代器位置。
#include <iostream>
#include <list>
using namespace std;int main() {list<int> lt1(4, 2);list<int> lt2(4, 6);lt1.splice(lt1.begin(), lt2);//将容器lt2拼接到容器lt1的开头for (auto e: lt1) {cout << e << " ";}cout << endl;//6 6 6 6 2 2 2 2list<int> lt3(4, 2);list<int> lt4(4, 6);lt3.splice(lt3.begin(), lt4, lt4.begin());//将容器lt4的第一个数据拼接到容器lt3的开头for (auto e: lt3) {cout << e << " ";}cout << endl;//6 2 2 2 2list<int> lt5(4, 2);list<int> lt6(4, 6);lt5.splice(lt5.begin(), lt6, lt6.begin(), lt6.end());//将容器lt6的指定迭代器区间内的数据拼接到容器lt5的开头for (auto e: lt5) {cout << e << " ";}cout << endl;//6 6 6 6 2 2 2 2return 0;
}

注意: 容器当中被拼接到另一个容器的数据在原容器当中就不存在了。(实际上就是将链表当中的指定结点拼接到了另一个容器当中)

remove_if

remove_if函数用于删除容器当中满足条件的元素。

#include <iostream>
#include <list>
using namespace std;bool single_digit(const int &val) {return val < 10;
}int main() {list<int> lt;lt.push_back(10);lt.push_back(4);lt.push_back(7);lt.push_back(18);lt.push_back(2);lt.push_back(5);lt.push_back(9);for (auto e: lt) {cout << e << " ";}cout << endl;              //10 4 7 18 2 5 9lt.remove_if(single_digit);//删除容器当中值小于10的元素for (auto e: lt) {cout << e << " ";}cout << endl;//10 18return 0;
}

3.list迭代器失效问题

此处可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

void TestListIterator1() {int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto it = l.begin();while (it != l.end()) {l.erase(it);++it;}
}

erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值

改正:

void TestListIterator() {int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto it = l.begin();while (it != l.end()) {l.erase(it++);// 或者it = l.erase(it);}
}

4.list模拟实现

在这里插入图片描述

要模拟实现list,必须要熟悉list的底层结构以及其接口的含义,通过上面的学习,这些内容已基本掌握,现 我们来模拟实现list。

代码如下:

#pragma once
#include "iterator.h"
#include <algorithm>
#include <assert.h>
#include <iostream>
#include <stdlib.h>
using namespace std;
// list - 底层是一个双向带头循环链表
template<class T>
struct list_node {list_node *next;list_node *prev;T data;// 模板T类型,适用任何类型// 构造函数初始化列表// T()被用来初始化list_node类的data成员变量,以确保每个新创建的list_node对象都有一个合适的T类型的默认值。list_node(const T &x = T())// T()用来给自定义类型调用默认构造函数来初始化x: next(nullptr), prev(nullptr), data(x) {}
};// list类
template<class T>
class list {
public:typedef list_node<T> node;                  // 链表typedef list_iterator<T, T &, T *> iterator;// 迭代器// const迭代器 通过const T& 传给Ref ,const T* 传给Ptrtypedef list_iterator<T, const T &, const T *> const_iterator;// const迭代器 - 通过const迭代器访问的数据无法被修改typedef STL_reverse_iterator<iterator, T &, T *> reverse_iterator;// 节点初始化void empty_init() {head = new node;head->next = head;head->prev = head;}// list默认构造函数list() {empty_init();}// 利用迭代器构造函数template<class iterator>list(iterator first, iterator last) {empty_init();while (first != last) {push_back(*first);++first;}}//拷贝构造  lt2(lt1)  老方法/*list(const list<T>& lt){empty_init();for (auto e : lt){push_back(e);  //将lt的元素复制到现在的list中}}*/void swap(list<T> &tmp) {std::swap(head, tmp.head);//交换头指针}// 拷贝构造-现代方法list(const list<T> &lt) {empty_init();                     // 必须有,不然)_head就是空指针list<T> tmp(lt.begin(), lt.end());//由lt的迭代器,构造出一个tmpswap(tmp);                        //交换tmp和this->head的指针}// 赋值 lt1 = lt3                这里lt就是lt3的拷贝,lt1是thislist<T> &operator=(list<T> lt) {swap(lt);    // 交换 lt和this交换return *this;// 返回自己就是返回lt,赋值给别的对象}// 迭代器通常建议将迭代器作为值传递,而不是作为引用传递。引用会导致迭代器失效iterator begin() {return iterator(head->next);// 调用默认构造函数给node初始化}const_iterator begin() const// const修饰的函数,无法改变成员变量{return const_iterator(head->next);// 指针不能改变,但可以赋值给别人}reverse_iterator rbegin() {return reverse_iterator(head->prev);//rbegin 是最后一个数}reverse_iterator rend() {return reverse_iterator(head);//rend是头指针}iterator end() {// 双向带头循环判尾是头节点headreturn iterator(head);}const_iterator end() const {return const_iterator(head);}// pos迭代器不会失效,插入后,pos位置永远不会变,地址不变void insert(iterator pos, const T &x) {// pos是一个类node *cur = pos._node;     // 先取pos位置的节点地址node *prevnode = cur->prev;// 记录pos位置的前节点node *newnode = new node(x);prevnode->next = newnode;newnode->prev = prevnode;newnode->next = cur;cur->prev = newnode;}iterator erase(iterator pos) {if (pos != end()) {// 先记录前节点 后节点node *prevnode = pos._node->prev;node *nextnode = pos._node->next;prevnode->next = nextnode;nextnode->prev = prevnode;delete pos._node;// 返回下一个地址return iterator(nextnode);} else {perror("erase fail");exit(-1);}}void push_back(const T &x) {insert(end(), x);// 复用}void pop_back() {erase(end()--);// end()是头指针,头指针的prev是尾节点}void push_front(const T &x) {insert(begin(), x);}void pop_front() {erase(begin());}void clear() {// 清理内存 - 不清理头节点iterator it = begin();while (it != end()) {erase(it);it++;}}~list() {clear();delete head;head = nullptr;}private:node *head;// 头节点 - list只有一个数据成员,头节点
};

list的反向迭代器

通过前面例子知道,反向迭代器的++就是正向迭代器的–,反向迭代器的–就是正向迭代器的++,因此反向迭代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行 包装即可。

iterator.h:

#pragma once
template<class T>
struct list_node;//声明外部类,
// list迭代器
template<class T, class Ref, class Ptr>
struct list_iterator {typedef list_node<T> node;                  // 链表typedef list_iterator<T, Ref, Ptr> iterator;// 迭代器node *_node;                                // 迭代器里唯一的成员变量:链表指针// 迭代器默认构造函数,传的是迭代器链表指针list_iterator(node *n): _node(n) {}// 解引用 - 返回的是链表的值  Ref通过传参,T和const T 用来控制const类型和非const类型Ref operator*() {return _node->data;}//-> 返回的是链表data的地址   Ptr通过传参,T和const T 用来控制const类型和非const类型Ptr operator->() {return &_node->data;}// 前置++ 先++,在返回自己iterator &operator++() {_node = _node->next;return *this;}// 后置++  先返回 在++iterator operator++(int) {iterator tmp = *this;// 注意:临时变量,不能引用返回_node = _node->next;return tmp;// tmp是一个类,不是引用返回,返回的时候会创建一个临时类}// 前置-- 先--,在返回自己iterator &operator--() {_node = _node->prev;return *this;}// 后-- 在返回,在--iterator operator--(int) {iterator tmp = *this;_node = _node->prev;return tmp;}// pos地址++iterator &operator+(int x) {while (x--) {//*this表示迭代器里的指针,++复用前面的重载,表示指针++*this = ++*this;}return *this;}iterator &operator-(int x) {while (x--) {*this = --*this;}return *this;}// this->_node 不等于参数_nodebool operator!=(const iterator &it) {return _node != it._node;}
};//反向迭代器
template<class iterator, class Ref, class Ptr>
struct STL_reverse_iterator {iterator cur;//正向迭代器typedef STL_reverse_iterator<iterator, Ref, Ptr> reverse_iterator;STL_reverse_iterator(iterator it): cur(it) {}Ref operator*() {return *cur;//对正向迭代器解引用,就是返回node->data}reverse_iterator operator++() {--cur;return *this;}reverse_iterator operator--() {++cur;return *this;}bool operator!=(const reverse_iterator &s) {return cur != s.cur;}
};

5.list和vector对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不 同,其主要不同如下:

vectorlist
底层结构动态顺序表,一段连续空间带头结点的双向循环链表
随机访问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素 效率O(N)
插入和删除任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不需要搬移元素,时间复杂度为 O(1)
空间利 用率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低, 缓存利用率低
迭代器原生态指针对原生态指针(节点指针)进行封装
迭代器失效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效, 删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使用场景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59997.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Quickstart: MinIO for Linux

单节点部署教程 1.安装Minio服务端 //wget下载二进制文件 wget https://dl.min.io/server/minio/release/linux-amd64/minio //赋予权限 chmod x minio //将minio可执行文件移入usr/local/bin目录下&#xff0c;使得minio可以全局执行 sudo mv minio /usr/local/bin/ 2.启动Mi…

多线程学习之解决线程同步的实现方法

一、卖票的多线程实现 需求&#xff1a;共有100张票&#xff0c;而它有3个窗口卖票&#xff0c;请设计一个程序模拟该电影院卖票 代码实现&#xff1a; /*** Author&#xff1a;kkoneone11* name&#xff1a;SellTicket1* Date&#xff1a;2023/8/26 11:32*/ public class S…

电子电路学习笔记之NCP304LSQ37T1G ——超低电流电压检测器

超低电流电压检测器是一种专门用于检测极小电流值的设备。它们常用于电子元件或电路中&#xff0c;用于监测电流的存在和程度。这些检测器通常具有高灵敏度和高精度&#xff0c;能够测量微安级别或更小的电流。 超低电流电压检测器的应用领域广泛&#xff0c;例如电池管理系统…

vue实现自定义树形组件

欢迎点击关注-前端面试进阶指南&#xff1a;前端登顶之巅-最全面的前端知识点梳理总结 *分享一个使用比较久的&#x1fa9c; 效果展示&#xff1a; 近期的一个功能需求&#xff0c;实现一个树形结构&#xff1a;可点击&#xff0c;可拖拽&#xff0c;右侧数据可以拖拽到对应的…

六、Json 数据的交互处理

文章目录 一、JSON 数据的交互处理1、为什么要使用 JSON2、JSON 和 JavaScript 之间的关系3、前端操作 JSON3.1 JavaScript 对象与 JSON 字符串之间的相互转换 4、JAVA 操作 JSON4.1 Json 的解析工具&#xff08;Gson、FastJson、Jackson&#xff09;4.2 ResponseBody 注解、Re…

Fedora Linux 的家族(一):官方版本

导读本文将对 Fedora Linux 官方版本进行更详细的介绍。共有五个 版本&#xff1a; Fedora Workstation、Fedora Server、Fedora IoT、Fedora CoreOS 和 Fedora Silverblue。Fedora Linux 下载页面目前显示其中三个为 官方 版本&#xff0c;另外两个为 新兴 版本。本文将涵盖所…

LOIC(low orbit ion cannon)

前言 重要的话说三遍&#xff1a; 该程序仅用于学习用途&#xff0c;请勿用于非法行为上&#xff01;&#xff01;&#xff01; 该程序仅用于学习用途&#xff0c;请勿用于非法行为上&#xff01;&#xff01;&#xff01; 该程序仅用于学习用途&#xff0c;请勿用于非法行为上…

【C++初阶】list的常见使用操作

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…

关闭jenkins插件提醒信息

jenkins提醒信息和安全警告可以帮助我们了解插件或者jenkins的更新情况&#xff0c;但是有些插件是已经不维护了&#xff0c;提醒却一直存在&#xff0c;看着糟心&#xff0c;就像下面的提示 1、关闭插件提醒 找到如下位置&#xff1a;系统管理-系统配置-管理监控配置 打开管…

线性代数的学习和整理11: 子式与余子式

目录 1 原始矩阵A 2 子式&#xff08;都是行列式&#xff09; 2.1 k阶子式&#xff08;行数列数即可&#xff09; 比如1阶子式&#xff1a;因为只有1行1列 比如2阶子式&#xff1a;因为有2行2列 比如3阶子式&#xff1a;因为有3行3列 2.2 k阶主子式 {行序号数组} {列序号…

java对时间序列根据阈值进行连续性分片

问题描述&#xff1a;我需要对一个连续的时间戳list进行分片&#xff0c;分片规则是下一个数据比当前数据要大于某一个阈值则进行分片&#xff1b; 解决方式&#xff1a; 1、输入的有顺序的list &#xff0c;和需要进行分片的阈值 2、调用方法&#xff0c;填入该排序的list和阈…

阿里云轻量应用服务器Linux-Centos7下Oracle19c的配置

初始环境&#xff1a;阿里云轻量应用服务器已经安装Oracle19c 具体目标&#xff1a;配置Oracle Database 19c 目录 第一步&#xff1a;切换到Oracle命令行第二步&#xff1a;新建用户和表空间第三步&#xff1a;切换用户第四步&#xff1a;在当前用户下创建一些表第五步&#x…

SQL Server 2019导入txt数据

1、选择导入数据 2、选择Flat file Source 选择文件&#xff0c;如果第一行不是列名&#xff0c;就不勾选。 3、下一步 可以看看数据是否是对的 4、下一步 选择SQL server Native Client 11&#xff0c;数据库选择导入进的库 输入连接数据库的名字和要导入的数据库 下一…

【Jetpack】Navigation 导航组件 ⑤ ( NavigationUI 类使用 )

文章目录 一、NavigationUI 类简介二、NavigationUI 类使用流程1、创建 Fragment2、创建 NavigationGraph3、Activity 导入 NavHostFragment4、创建菜单5、Activity 界面开发 NavigationUI 的主要逻辑 ( 重点 )a、添加 Fragment 布局b、处理 Navigation 导航逻辑 ( 重点 )c、启…

设计模式--工厂模式(Factory Pattern)

一、 什么是工厂模式 工厂模式&#xff08;Factory Pattern&#xff09;是一种创建型设计模式&#xff0c;它提供了一种创建对象的接口&#xff0c;但是将对象的实例化过程推迟到子类中。工厂模式允许通过调用一个共同的接口方法来创建不同类型的对象&#xff0c;而无需暴露对…

Python爬虫武汉市二手房价格数据采集分析:Linear Regression、XGBoost和LightGBM|代码分享...

全文链接&#xff1a;http://tecdat.cn/?p31958 分析师&#xff1a;Yan Liu 我国有大量的资金都流入了房地产行业&#xff0c;同时与其他行业有着千丝万缕的联系&#xff0c;可以说房地产行业对推动我国深化改革、经济发展、工业化和城市化具有不可磨灭的作用&#xff08;点击…

java八股文面试[java基础]——字节码

字节码技术应用 字节码技术的应用场景包括但不限于AOP&#xff0c;动态生成代码&#xff0c;接下来讲一下字节码技术相关的第三方类库&#xff0c;第三方框架的讲解是为了帮助大家了解字节码技术的应用方向&#xff0c;文档并没有对框架机制进行详细分析&#xff0c;有兴趣的可…

为什么海外专利申请含金量高?

为什么海外专利申请含金量高&#xff1f;通常&#xff0c;具有较大市场价值的发明才需要在国外申请专利保护&#xff0c;专利的海外申请数量是衡量经济和创新价值的重要指标&#xff0c;即专利全球性指标。我国海外专利申请量比重过低&#xff0c;说明专利的创造性未达到国外专…

注解和class对象和mysql

注解 override 通常是用在方法上的注解表示该方法是有重写的 interface 表示一个注解类 比如 public interface override{} 这就表示是override是一个注解类 target 修饰注解的注解表示元注解 deprecated 修饰某个元素表示该元素已经过时了 1.不代表该元素不能用了&…

查漏补缺 - 构造函数,原型,this,原型链,继承

目录 1&#xff0c;构造函数2&#xff0c;原型3&#xff0c;this4&#xff0c;原型链1&#xff0c;特点2&#xff0c;Object.prototype.toString()3&#xff0c;instanceof 运算符4&#xff0c;Object.getPrototypeOf()5&#xff0c;创建空原型对象6&#xff0c;面试题 5&#…