基于入侵杂草算法优化的Elman神经网络数据预测 - 附代码

基于入侵杂草算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于入侵杂草算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于入侵杂草优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用入侵杂草算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于入侵杂草优化的Elman网络

入侵杂草算法原理请参考:https://blog.csdn.net/u011835903/article/details/108491479

利用入侵杂草算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

入侵杂草参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);%% 入侵杂草相关参数设定
%% 定义入侵杂草优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,入侵杂草-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/599534.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

APP端网络测试与弱网模拟!

当前APP网络环境比较复杂,网络制式有2G、3G、4G网络,还有越来越多的公共Wi-Fi。不同的网络环境和网络制式的差异,都会对用户使用app造成一定影响。另外,当前app使用场景多变,如进地铁、上公交、进电梯等,使…

Ribbon客户端负载均衡

简介 Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端负载均衡的工具。 简单的说,Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法和服务调用。Ribbon客户端组件提供一系列完善的配置项如连接超时,重试等…

【操作系统】输入/输出系统

目录 l/O系统的功能、模型和接口 l/O设备和设备控制器 中断和中断处理程序 设备驱动程序 与设备无关的I/O 用户层的I/O软件 缓冲区管理 磁盘性能概述和磁盘调度 l/O系统的功能、模型和接口 I/O系统管理 1)主要对象: I/O设备和对应的设备控制器 …

IP代理测试:关于Ping测试你需要知道的一切干货

您在访问互联网时是否遇到过持续滞后或花费很长时间等待网站加载的情况?为了避免这种情况,您可以测试 ping 以查看连接速度。如果您使用代理,此 ping 测试还会显示代理服务器的响应速度。 ping 测试是一个很有价值的工具,可以帮助…

C++ 释放指针

在C中,释放指针通常使用delete或delete[]操作符; 如果指针指向的是单个对象,可以使用delete操作符进行释放; 在释放完内存后,最好将指针置为nullptr,以避免出现悬空指针(dangling pointer&#…

【Linux Shell】4. 数组

文章目录 【 1. 数组的定义 】【 2. 读取数组 】【 3. 关联数组 】3.1 关联数组的定义3.2 关联数组元素的调用 【 4. 获取数组中的所有元素 】【 5. 获取数组的长度 】 数组中可以存放多个值。 Bash Shell 只支持一维数组(不支持多维数组),初…

算法训练第五十九天|503. 下一个更大元素 II、42. 接雨水

503. 下一个更大元素 II: 题目链接 给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。 数字 x 的 下一个更大的元素 是按数组遍历顺序,这个数字之…

imgaug库指南(五):从入门到精通的【图像增强】之旅

引言 在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的…

智慧校园全空间三维电子沙盘系统

一、概述 易图讯科技(www.3dgis.top)采用大数据、云计算、虚拟现实、物联网、AI等先进技术,自主可控高性能WebGIS可视化引擎,支持多用户客户端通过网络请求访问服务器地图和专题数据,提供地理信息数据、专题数据的并发…

对象克隆学习

假如说你想复制一个简单变量。很简单: int apples 5; int pears apples; 不仅仅是int类型,其它七种原始数据类型(boolean,char,byte,short,float,double.long)同样适用于该类情况。 但是如果你复制的是一个对象,情况就有些复杂了。 …

代理(Proxy)模式

代理(Proxy)模式介绍 作用:通过代理可以控制访问某个对象的方法,在调用这个方法前做前置处理,调用这个方法后做后置处理。(即: AOP的微观实现!) 核心角色 抽象角色(接口…

C++初级(三)

我们这里还是在C基础上进行对C基础语法的补充学习! 一.C数组 C数组大体和C相同,但是C数组还是有一定的区别的。 我们先看看C和C数组共同的易错点知识: 1.数组只能一次初始化。 2.如果对数组只进行一部分初始化,那么其他未初始…

【React系列】Hook(一)基本使用

本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. 认识hook 1.1. 为什么需要hook Hook 是 React 16.8 的新增特性,它可以让我们在不编写class的情况下…

群晖Docker部署HomeAssistant容器结合内网穿透远程控制家中智能设备

目录 一、下载HomeAssistant镜像 二、内网穿透HomeAssistant,实现异地控制智能家居 三、使用固定域名访问HomeAssistant 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。 点击跳转到网站 Ho…

Guava Cache 异步刷新技巧,你值得拥有!

以下文章来源于勇哥Java实战 ,作者勇哥 Guava Cache是一款非常优秀的本地缓存框架。 这篇文章,我们聊聊如何使用 Guava Cache 异步刷新技巧带飞系统性能 。 1 经典配置 Guava Cache 的数据结构跟 JDK1.7 的 ConcurrentHashMap 类似,提供了基…

citeSpace保姆级安装使用教程

citeSpace保姆级安装使用教程 文章目录 citeSpace保姆级安装使用教程CiteSpace功能与参数区安装使用知网数据导出citespace数据导入结果 设置操作隐藏节点 CiteSpace功能与参数区 安装 citeSpace安装教程 citespace下载 网址:https://citespace.podia.com/ 安装之…

STM32使用中断方式进行USART数据收发以及printf函数的重写

时间记录:2024/1/5 一、USART/UART介绍 协议介绍 (1)起始位,一位逻辑电平0表示 (2)数据位,8-9位,逻辑高低电平,一般使用8位 (3)校验位&#xff…

2-sql注入之sqli-labs靶场搭建

文章目录 SQL注入之sqli-labs靶场搭建1、Sqli-labs环境安装需要安装以下环境工具下载链接: 2、phpstudy连接mysql总是启动了又停止第一种情况可能是端口占用问题第二种情况就是曾经在电脑上安装过mysql SQL注入之sqli-labs靶场搭建 Sqli-labs是一个印度程序员写的&…

vmware中ubuntu虚拟机不能够用共享文件夹

有时候发现装好虚拟机后,然后 虚拟机-设置-选项-共享文件夹 然后使用快捷键ctrlaltt 打开命令行,cd /mnt下没有看到hgfs文件夹 解决办法是安装vmware tools工具 此时想通过点击 虚拟机-安装vmwaretools工具 按钮 居然发现该按钮是灰色的&#xff0…

CMake入门教程【核心篇】动态库(dll, so)

😈「CSDN主页」:传送门 😈「Bilibil首页」:传送门 😈「动动你的小手」:点赞👍收藏⭐️评论📝 文章目录 CMake入门教程【核心篇】动态库(dll, so)1.简介2.动态库的优势3.动态库的劣势4.创建动态库5.完整代码示例6.实战使用技巧与注意事项