深入理解可变参数

目录

1.C语言方式

1.1.宏介绍

1.2.原理详解

1.3.案例分析

1.4.其他实例

2.C++之std::initializer_list

2.1.简介

2.2.原理详解

2.3.案例分析

3.C++之可变参数模版

3.1.简介

3.2.可变参数个数

3.3.递归包展开

3.4.逗号表达式展开

3.5.Lambda 捕获

3.6.转发参数包

4.总结


1.C语言方式

1.1.宏介绍

C语言中的可变参数是指函数可以接受可变数量的参数。这些参数的数量在编译时是未知的。在这些可变参数中的参数类型可以相同,也可以不同;可变参数的每个参数并没有实际的名称与之相对应,用起来是很灵活;在头文件stdarg.h中,涉及到的宏有:
va_list :   是指向参数的指针 ,通过指针运算来调整访问的对象
va_start :获取可变参数列表的第一个参数的地址
va_arg : 获取可变参数的当前参数,返回指定类型并将指针指向下一参数
va_end : 清空va_list可变参数列表

1.2.原理详解

函数的参数是存放在栈中,地址是连续的,所以可以通过相对位置去访问,这也是可变参数的访问方式;变长参数的实现需要依赖于C语言默认的cdecl调用惯例的自右向左压栈传递方式;可变参数是由1.1介绍的几个宏来实现,但是由于硬件平台的不同,编译器的不同,宏的定义也不相同,下面是AMD CPU x64平台下的定义:

typedef char* va_list;

va_list的定义

//[1]
#ifdef __cplusplus
#define _ADDRESSOF(v) (&reinterpret_cast<const char &>(v))
#else
#define _ADDRESSOF(v) (&(v))
#endif//[2]
#define va_start _crt_va_start
#define va_arg   _crt_va_arg
#define va_end   _crt_va_end
#define va_copy(destination, source) ((destination) = (source))//[3]
#define _PTRSIZEOF(n) ((sizeof(n) + sizeof(void*) - 1) & ~(sizeof(void*) - 1))//系统内存对齐
#define _ISSTRUCT(t)  ((sizeof(t) > sizeof(void*)) || (sizeof(t) & (sizeof(t) - 1)) != 0)
#define _crt_va_start(v,l)	((v) = (va_list)_ADDRESSOF(l) + _PTRSIZEOF(l))
#define _crt_va_arg(v,t)	_ISSTRUCT(t) ?						\(**(t**)(((v) += sizeof(void*)) - sizeof(void*))) :	\( *(t *)(((v) += sizeof(void*)) - sizeof(void*)))
#define _crt_va_end(v)		((v) = (va_list)0)
#define _crt_va_copy(d,s)	((d) = (s))

从上面的源码可以看出:
1) va_list  v; 定义一个指向char类型的指针v。
2) va_start(v,l) ;执行 v = (va_list)&l + _PTRSIZEOF(l) ,v指向参数 l 之后的那个参数的地址,即 v指向第一个可变参数在堆栈的地址。
3) va_arg(v,t) , ( (t )((v += _PTRSIZEOF(t)) - _PTRSIZEOF(t)) ) 取出当前v指针所指的值,并使 v 指向下一个参数。 v+=sizeof(t类型) ,让v指向下一个参数的地址。然后返回 v - sizeof(t类型) 的t类型指针,这正是第一个可变参数在堆栈里的地址。然后 用取得这个地址的内容。
va_end(v) ; 清空 va_list v。

1.3.案例分析

#include <iostream>
#include <stdarg.h>void printValues(const char* format, ...) {va_list args;  // 定义一个va_list类型的变量va_start(args, format);  // 初始化argsfor (const char* arg = format; *arg != '\0'; ++arg) {if (*arg == '%') {++arg;switch (*arg) {case 'd':  // 对于整数std::cout << va_arg(args, int);break;case 's':  // 对于字符串std::cout << va_arg(args, char*);break;default:std::cout << "Invalid format specifier: " << *arg;}}else {std::cout << *arg;}}va_end(args);  // 清理va_list变量
}int main() {printValues("say self info: %s, age %d\n", "xiao", 45);  //输出: say self info xiao, age 45return 0;
}

printValues函数调用的时候展开为:

void printValues(const char* format, const char* param1, int param2)

从上面的代码来分析一下这个示例:在windows中,栈由高地址往低地址生长,调用printValues函数时,其参数入栈情况如下:

当调用va_start(args, format)时:args指针指向情况对应下图:

        当调用va_arg(args, ...)时,它必须返回一个由va_list所指向的恰当的类型的数值,同时递增args,使它指向参数列表中的一个参数(即递增的大小等于与va_arg宏所返回的数值具有相同类型的对象的长度)。因为类型转换的结果不能作为赋值运算的目标,所以va_arg宏首先使用sizeof来确定需要递增的大小,然后把它直接加到va_list上,这样得到的指针再被转换为要求的类型。

        在上面的示例中,我们定义了一个名为printValues的函数,它接受一个格式字符串和一个可变数量的参数。我们使用va_list、va_start、va_arg和va_end这些宏来处理可变参数。在格式字符串中,我们使用%来指定参数的类型,例如%d表示整数,%s表示字符串。然后,我们使用va_arg宏来获取相应的参数值。最后,我们使用va_end宏来清理va_list变量。

1.4.其他实例

1) printf实现

#include <stdarg.h>int printf(char *format, ...)
{va_list ap;int n;va_start(ap, format);n = vprintf(format, ap);va_end(ap);return n;    
}

2)定制错误打印函数error

#include  <stdio.h>
#include  <stdarg.h>void error(char *format, ...)
{va_list ap;va_start(ap, format);fprintf(stderr, "Error: ");vfprintf(stderr, format, ap);va_end(ap);fprintf(stderr, "\n");return;    
}

2.C++之std::initializer_list

        在C++中我们一般用()和=初始化参数或对象,还可以用{}来初始化参数或对象,比如数组的初始化int m[] = {1,4,5},除了数组,在STL里面很多标准的容器和自定义类型都用{} 进行初始化。

        自C++11标准开始就引入了列表初始化的概念,即支持使用{}对变量或对象进行初始化,且与传统的变量初始化的规则一样,也分为拷贝初始化和直接初始化两种方式。

2.1.简介

std::initializer_list<T> 类型对象是一个访问 const T 类型对象数组的轻量代理对象。
std::initializer_list 对象在这些时候自动构造:
1)用花括号初始化器列表列表初始化一个对象,其中对应构造函数接受一个 std::initializer_list 参数,如std::vector的构造函数  vector(initializer_list<_Ty> _Ilist, const _Alloc& _Al = _Alloc())
2)以花括号初始化器列表为赋值的右运算数,或函数调用参数,而对应的赋值运算符/函数接受 std::initializer_list 参数
3)绑定花括号初始化器列表到 auto ,包括在范围 for 循环中

initializer_list 可由一对指针或指针与其长度实现。复制一个 std::initializer_list 不会复制其底层对象。

注意:

a、底层数组不保证在原始 initializer_list 对象的生存期结束后继续存在。 std::initializer_list 的存储是未指定的(即它可以是自动、临时或静态只读内存,依赖场合)。

b、底层数组是 const T[N] 类型的临时数组,其中每个元素都从原始初始化器列表的对应元素复制初始化(除非窄化转换非法)。底层数组的生存期与任何其他临时对象相同,除了从数组初始化 initializer_list 对象会延长数组的生存期,恰如绑定引用到临时量(有例外,例如对于初始化非静态类成员)。底层数组可以分配在只读内存。

c、若声明了 std::initializer_list 的显式或偏特化则程序为谬构。

2.2.原理详解

源码面前无秘密,直接上源码:

template <class _Elem>
class initializer_list {
public:using value_type      = _Elem;using reference       = const _Elem&;using const_reference = const _Elem&;using size_type       = size_t;using iterator       = const _Elem*;using const_iterator = const _Elem*;constexpr initializer_list() noexcept : _First(nullptr), _Last(nullptr) {}  //1constexpr initializer_list(const _Elem* _First_arg, const _Elem* _Last_arg) noexcept: _First(_First_arg), _Last(_Last_arg) {}                               //2_NODISCARD constexpr const _Elem* begin() const noexcept {return _First;}_NODISCARD constexpr const _Elem* end() const noexcept {return _Last;}_NODISCARD constexpr size_t size() const noexcept {return static_cast<size_t>(_Last - _First);}private:const _Elem* _First;const _Elem* _Last;
};// FUNCTION TEMPLATE begin
template <class _Elem>
_NODISCARD constexpr const _Elem* begin(initializer_list<_Elem> _Ilist) noexcept {return _Ilist.begin();
}// FUNCTION TEMPLATE end
template <class _Elem>
_NODISCARD constexpr const _Elem* end(initializer_list<_Elem> _Ilist) noexcept {return _Ilist.end();
}

        从上面的STL的std::initializer_list源码来看,std::initializer_list是一个模版类,定义了指向该类对象首端、尾端的迭代器(即常量对象指针const T*),实际上就是对{}表达式内容的简单封装,当使用{}时,就会调用 initializer_list(const _Elem* _First_arg, const _Elem* _Last_arg) 构造出std::initializer_list。

        当得到了一个std::initializer_list对象后,再来寻找标准容器中以std::initializer_list为形参的构造函数,并调用该构造函数对容器进行初始化

2.3.案例分析

示例1:

class IMessageField1 {};//1
void  addMessageField(std::initializer_list<IMessageField1*> t)
{std::vector<IMessageField1*>  pTest(t);
}#if  0
//2
void  addMessageField(std::vector<IMessageField1*> t)
{std::vector<IMessageField1*>  pTest(t);
}
#endifvoid  main()
{//[1]std::unique_ptr<IMessageField1> a(new IMessageField1);std::unique_ptr<IMessageField1> b(new IMessageField1);std::unique_ptr<IMessageField1> c(new IMessageField1);std::unique_ptr<IMessageField1> d(new IMessageField1);std::unique_ptr<IMessageField1> e(new IMessageField1);addMessageField({ a.get(), b.get(), c.get(), d.get(), e.get() });
}

   上面代码1和2的方式都可以实现功能,2的方式实际上也是先临时生成一个std::initializer_list,再调用std::vector的构造函数临时生成一个std::vector,最后再用刚生成的std::vector初始化pTest,相比1的方式,多了几重复制,效率比较低,一般采用1的方式实现功能。

示例2:

#include <iostream>
#include <vector>
#include <initializer_list>template <class T>
struct S {std::vector<T> v;S(std::initializer_list<T> l) : v(l) {std::cout << "constructed with a " << l.size() << "-element list\n";}void append(std::initializer_list<T> l) {v.insert(v.end(), l.begin(), l.end());}std::pair<const T*, std::size_t> c_arr() const {return {&v[0], v.size()};  // 在 return 语句中复制列表初始化// 这不使用 std::initializer_list}
};template <typename T>
void templated_fn(T) {}int main()
{int a1[] = { 1,2,3,4,5,6 }; //数组拷贝初始化int a2[]{ 5,6,7,8,9,0 };   //数组直接初始化S<int> s = {1, 2, 3, 4, 5}; // 复制初始化s.append({6, 7, 8});      // 函数调用中的列表初始化std::cout << "The vector size is now " << s.c_arr().second << " ints:\n";for (auto n : s.v)std::cout << n << ' ';std::cout << '\n';std::cout << "Range-for over brace-init-list: \n";for (int x : {-1, -2, -3}) // auto 的规则令此带范围 for 工作std::cout << x << ' ';std::cout << '\n';auto al = {10, 11, 12};   // auto 的特殊规则std::cout << "The list bound to auto has size() = " << al.size() << '\n';//    templated_fn({1, 2, 3}); // 编译错误!“ {1, 2, 3} ”不是表达式,// 它无类型,故 T 无法推导templated_fn<std::initializer_list<int>>({1, 2, 3}); // OKtemplated_fn<std::vector<int>>({1, 2, 3});           // 也 OK
}

输出:

constructed with a 5-element list
The vector size is now 8 ints:
1 2 3 4 5 6 7 8
Range-for over brace-init-list: 
-1 -2 -3 
The list bound to auto has size() = 3

示例3:

struct MyTest{explicit  X(int a, int b) :a(a), b(b) { std::cout << "MyTest(int a,int b)\n"; }int a{};int b{};
};int main() {MyTest x{ 1,2 }; //OKMyTest x2( 1,2 ); //OKMyTest x3 = { 1,2 }; //Error
}

MyTest x3 ={1,2}; 参考复制初始化的规则:复制列表初始化(考虑 explicit 和非 explicit 构造函数,但只能调用非 explicit 构造函数)

3.C++之可变参数模版

3.1.简介

一个可变参数模板就是一个可以接受可变参数的模版函数或模板类;参数的类型是一种模板,是可经推导的,可以是任意存在的类型(系统类型或自定义类型);参数数目可变的,可以包括零个、一个或多个;可变数目的参数被称为参数包(parameter packet)。存在两种参数包:模板参数包(template parameter packet),表示零个或多个模板参数;函数参数包function parameterpacket),表示零个或多个函数参数。如:

template<typename... Arguments> class vtclass;vtclass< > vtinstance1;
vtclass<int> vtinstance2;
vtclass<float, bool> vtinstance3;
vtclass<long, std::vector<int>, std::string> vtinstance4;

3.2.可变参数个数

利用sizeof...()计算可变参数的大小,如:

template<class... Types>
struct count
{static const std::size_t value = sizeof...(Types);
};

3.3.递归包展开

C++的包展开是通过 args... 的形式,后面... 就意味着展开包,需要两个函数:递归终止函数 和 递归函数过程就是参数包在展开的过程中递归调用自己,每调用一次参数包中的参数就会少一个,直到所有的参数都展开为止,当没有参数时,则调用递归终止函数终止递归过程。如下:

#include <iostream>using namespace std;void print() {cout << endl;
}template <typename T> 
void print(const T& t) {  //边界条件cout << t << endl;
}template <typename First, typename... Rest> 
void print(const First& first, const Rest&... rest) {cout << first << ", ";print(rest...); //打印剩余参数,注意省略号必须有
}int main()
{print(); // calls first overload, outputting only a newlineprint(1); // calls second overload// these call the third overload, the variadic template,// which uses recursion as needed.print(10, 20);   //输出: 10, 20print(100, 200, 300); //输出:100, 200, 300print("first", 2, "third", 3.14159); //输出: first, 2, third, 3.14159
}

3.4.逗号表达式展开

逗号表达式是会从左到右依次计算各个表达式,并将最后一个表达式的值作为返回值返回;我们将最后一个表达式设为整型值,所以最后返回的是一个整型;将处理参数个数的动作封装成一个函数,将该函数作为逗号表达式的第一个表达式;…代表参数包,列表展开。如:

template <class T>
void printArg(T t) {cout << t << endl;
}//展开参数包
template <class ...Args>
void expand(Args... args) {int arr[] = { (printArg(args), 0)... };
}
int main()
{expand(1);expand(1, 'A');expand(1, "hello", 3);return 0;
}

函数执行expand(1, "hello", 3);的时候,调用expand,数组arr初始化会展开args参数,变化为:

int arr[] = {(printArg(1), 0), (printArg("hello"), 0), (printArg(3), 0)};

根据逗号表达式的规则,arr[] 还是 {0,0,0};

另外,还可以利用std::initializer_list 可以接收任意长度的初始化列表来展开包,如:

template<class F, class... Args>
void expand(const F& f, Args&&...args) {std::initializer_list<int>{(f(std::forward< Args>(args)), 0)...};
}int main()
{expand([](int i) { cout << i << endl; }, 23, 44, 2423);return 0;
}

3.5.Lambda 捕获

包展开可以在 lambda 表达式的捕获子句中出现:

template<class... Args>
void f(Args... args)
{auto lm = [&, args...] { return g(args...); };lm();
}

3.6.转发参数包

在C++11标准下,我们可以组合使用可变参数模板与std::forword机制来编写函数,实现将其实参不变地传递给其他函数,关于std::forward的详解讲解,可参考我的博客:C++之std::forward_c++ std::forward-CSDN博客

借助std::forward<Args>(args)... 就可以实现参数的完美转发了,如STL中map的插入函数emplace下:

template <class... _Valty>
iterator emplace(_Valty&&... _Val)
{return _Mybase::emplace(_STD forward<_Valty>(_Val)...).first;
}

4.总结

纸上得来终觉浅,绝知此事要躬行。

参考

形参包 (C++11 起) - cppreference.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/598432.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023 IoTDB Summit:清华大学软件学院长聘副教授龙明盛《IoTDB 新组件:内生机器学习》...

12 月 3 日&#xff0c;2023 IoTDB 用户大会在北京成功举行&#xff0c;收获强烈反响。本次峰会汇集了超 20 位大咖嘉宾带来工业互联网行业、技术、应用方向的精彩议题&#xff0c;多位学术泰斗、企业代表、开发者&#xff0c;深度分享了工业物联网时序数据库 IoTDB 的技术创新…

中国区县绿地曝光率数据,shp+excel格式,区县精度

基本信息. 数据名称: 中国区县绿地曝光率数据 数据格式: shpexcel 数据精度&#xff1a;区县 数据几何类型: —— 数据坐标系: WGS84坐标系 数据来源&#xff1a;网络公开数据 字段列表&#xff1a; 序号字段名称字段说明1xzqhdm_3区县代码2xzqhmc_3区县名称4xzqhm…

web网站,可当期末作业,随机一言,天气,时钟,音乐等综合网站

文章目录 主页面时间胶囊底部条文心一言音乐播放器天气时钟禁用右键其他每次刷新页面会随机更换壁纸新春版 主页面 时间胶囊 底部条 文心一言 点击可随机变化文心一言 音乐播放器 天气时钟 禁用右键 其他 每次刷新页面会随机更换壁纸 新春版

C#编程-描述内存分配

描述内存分配 分配给变量的内存通过两种方式引用&#xff1a;值类型和引用类型。内置数据类型&#xff0c;诸如int、char和float都是值雷兴国。当您声明int变量时&#xff0c;编译器会分配一个内存块以保持该整数值。请思考以下语句&#xff1a; int Num 50;上述语句为保存值…

kubernetes(二)创建集群

kubernetes&#xff08;一&#xff09;概述与架构 云原生实战 语雀 官网 Kubernetes 文档 | Kubernetes 更新&#xff1a;移除 Dockershim 的常见问题 | Kubernetes B站课程&#xff1a;https://www.bilibili.com/video/BV13Q4y1C7hS/?p26 安装版本说明&#xff1a; 视频教程…

【nginx】linux(centos版本)安装nginx

目录 一、下载安装包1.1 官网下载1.2 linux命令下载 二、安装2.1 安装依赖包2.2 安装nginx 三、启动四、访问五、关停六、重载配置 一、下载安装包 1.1 官网下载 1.官网地址 https://nginx.org/en/download.html2.版本说明 1.Mainline version-主线版本 2.Stable version-稳…

LeetCode 2487. 从链表中移除节点:单调栈

【LetMeFly】2487.从链表中移除节点&#xff1a;单调栈 力扣题目链接&#xff1a;https://leetcode.cn/problems/remove-nodes-from-linked-list/ 给你一个链表的头节点 head 。 移除每个右侧有一个更大数值的节点。 返回修改后链表的头节点 head 。 示例 1&#xff1a; 输…

聊一聊 .NET高级调试 内核模式堆泄露

一&#xff1a;背景 1. 讲故事 前几天有位朋友找到我&#xff0c;说他的机器内存在不断的上涨&#xff0c;但在任务管理器中查不出是哪个进程吃的内存&#xff0c;特别奇怪&#xff0c;截图如下&#xff1a; 在我的分析旅程中都是用户态模式的内存泄漏&#xff0c;像上图中的…

使用pnnx将Torch模型转换为ncnn

1. 引言 以往我们将Torch模型转换为ncnn模型&#xff0c;通常需经过Torch–>onnx&#xff0c;onnx–>ncnn两个过程。但经常会出现某些算子不支持的问题。 ncnn作者针对该问题&#xff0c;直接开发一个Torch直接转换ncnn模型的工具 (PNNX)&#xff0c;以下为相关介绍及使…

超快速排序

title: 超快速排序 date: 2024-01-05 11:51:43 tags: 逆序对 categories: 算法进阶指南 题目大意 解题思路 逆序数是一个序列每一个数的左边有多少比他本身大的值。将一个序列排序完整&#xff0c;最小交换次数即是逆序数之和。使用归并排序的同时&#xff0c;将每一个逆序数求…

C#用StringBuilder高效处理字符串

目录 一、背景 二、使用StringBuilder便捷、高效地操作字符串 三、实例 1.源码 2.生成效果 四、实例中知识点 1.StringBuilder类 &#xff08;1&#xff09;构造函数 &#xff08;2&#xff09;属性 &#xff08;3&#xff09;方法 2.Environment.NewLine 属性 一、…

SurfaceView和TextureView理解相关

一、为什么要使用SurfaceView 我们知道View是通过刷新来重绘视图&#xff0c;系统通过发出VSSYNC信号来进行屏幕的重绘&#xff0c;刷新的时间间隔是16ms,如果我们可以在16ms以内将绘制工作完成&#xff0c;则没有任何问题&#xff0c;如果我们绘制过程逻辑很复杂&#xff0c;…

SSD 颗粒还要涨价50%,入手前小心速度陷阱

大伙应该感受到了&#xff0c;自今年年中开始 SSD 普遍开始了小幅涨价。 但即便涨价到现在&#xff0c;NAND 厂商仍属于倒亏状态... 原因很简单&#xff0c;库存太多。 根据 TrendForce 的报道&#xff0c;主要制造商价格将需要再次上涨 40% 以上才能不亏&#xff0c;而达到盈…

【ZYNQ入门】第五篇、AXI HP口读写数据原理

目录 第一部分、AXI总线的相关知识 1、ZYNQ架构 2、AXI 总线和 AXI 接口以及 AXI 协议 3、AXI 总线与 ZYNQ 的关系 4、AXI 总线介绍 5、AXI 接口介绍 6、AXI 协议介绍 7、AXI高效传输的原因 8、常见总线汇总 9、HP接口写时序配置 10、HP DDR的地址分配 11、缓存一…

如何缓解BOT攻击?分享灵活准确的防御之道

BOT流量在所有互联网流量中的占比过半&#xff0c;而且存在好坏之分。其中“好”的BOT&#xff0c;比如在互联网上搜索和查找内容的BOT&#xff0c;它们是我们不可或缺的帮手。恶意的BOT进行信息数据爬取、薅羊毛等攻击行为&#xff0c;正损害着企业和用户的利益。专业数据统计…

将文本文件导入Oracle数据库的简便方法:SQL Developer

需求 我有一个文本文件dbim.txt&#xff0c;是通过alert log生成的&#xff0c;内容如下&#xff1a; 2020-09-11 2020-09-11 ... 2023-12-03 2023-12-03 2023-12-26我已经在Oracle数据库中建立了目标表&#xff1a; create table dbim(a varchar(16));我想把日志文件导入Or…

若依管理系统部署

本文章仅供参考&#xff0c;由于个软件版本不同可能会有偏差。 登录系统打开cmd 编辑文件 这些文件分别打开&#xff0c;打开后在浏览器会出现若依管理系统后台&#xff0c;输入账号 admin 密码 123456即可进入后台。 本文章仅供参考&#xff0c;由于个软件版本不同可能会有…

Linux内存管理:(六)页交换算法

文章说明&#xff1a; Linux内核版本&#xff1a;5.0 架构&#xff1a;ARM64 参考资料及图片来源&#xff1a;《奔跑吧Linux内核》 Linux 5.0内核源码注释仓库地址&#xff1a; zhangzihengya/LinuxSourceCode_v5.0_study (github.com) 1. 引言 在Linux操作系统中&#x…

synchronized锁的底层原理

synchronized 锁是 Java 中用于实现线程同步的关键字。它提供了一种简单而有效的方式来确保多个线程之间的互斥访问。底层原理可以通过 Java 的内存模型和对象监视器锁&#xff08;Monitor Lock&#xff09;来理解。 Monitor结构如下&#xff1a; 在 Java 的内存模型中&#x…

Spring Boot 与 Spring 框架的区别

一、前言 Spring Boot 和 Spring 框架是由 Spring 项目提供的两个关键的技术栈&#xff0c;它们在 Java 开发中扮演着不同的角色。在阐述其区别之前&#xff0c;我们先大致了解下这两个框架 二、Spring 框架 1、背景 Spring 框架是一个全栈的企业应用开发框架&#xff0c;起…