官网:https://prometheus.io/docs/introduction/overview/
中文: https://www.prometheus.wang/
Prometheus
选择 Prometheus 并不是偶然,因为:
• Prometheus 是按照 《Google SRE 运维之道》的理念构建的,具有实用性和前瞻性。
• Prometheus 社区非常活跃,基本稳定在 1个月1个版本的迭代速度,从 2016 年 v1.01 开始接触使用以来,到目前发布到 v2.13.x ,你会发现 Prometheus 一直在进步、在优化。
• Go 语言开发,性能优越,安装部署简单,多平台部署兼容性好。
• 时序数据库,丰富的数据收集客户端,官方以及第三方提供了各种常用开源 exporter。
• 丰富强大的查询能力。
• 对云原生 Kubernetes 支持友好。
Prometheus 作为监控后起之秀,尽管有不足之处,但是不妨碍我们使用和喜爱它。根据我们长期的使用经验来看,它足以满足大多数场景需求,只不过对于开源软件,往往需要根据业务去二次开发才能发挥出最大能力。
本书主要根据个人与相关人员的过去使用经验总结而成,内容主要包括 Prometheus 基本知识、进阶、实战、K8S以及常见问题列表等方面,希望对大家有所帮助。
本开源书籍既适用于具备 Linux 基础知识的运维初学者,也可供渴望理解 Prometheus 原理和实现细节的高级用户参考,同时也希望书中给出的实践案例在实际部署监控中对大家有所帮助。
Prometheus
Prometheus是一个开放性的监控解决方案,用户可以非常方便的安装和使用Prometheus并且能够非常方便的对其进行扩展。为了能够更加直观的了解Prometheus Server,接下来我们将在本地部署并运行一个Prometheus Server实例,通过Node Exporter采集当前主机的系统资源使用情况。 并通过Grafana创建一个简单的可视化仪表盘。
Prometheus组件
通过部署Node Exporter我们成功的获取到了当前主机的资源使用情况。接下来我们将从Prometheus的架构角度详细介绍Prometheus生态中的各个组件。
下图展示Prometheus的基本架构:
Prometheus Server
Prometheus Server是Prometheus组件中的核心部分,负责实现对监控数据的获取,存储以及查询。 Prometheus Server可以通过静态配置管理监控目标,也可以配合使用Service Discovery的方式动态管理监控目标,并从这些监控目标中获取数据。其次Prometheus Server需要对采集到的监控数据进行存储,Prometheus Server本身就是一个时序数据库,将采集到的监控数据按照时间序列的方式存储在本地磁盘当中。最后Prometheus Server对外提供了自定义的PromQL语言,实现对数据的查询以及分析。
Prometheus Server内置的Express Browser UI,通过这个UI可以直接通过PromQL实现数据的查询以及可视化。
Prometheus Server的联邦集群能力可以使其从其他的Prometheus Server实例中获取数据,因此在大规模监控的情况下,可以通过联邦集群以及功能分区的方式对Prometheus Server进行扩展。
Exporters
Exporter将监控数据采集的端点通过HTTP服务的形式暴露给Prometheus Server,Prometheus Server通过访问该Exporter提供的Endpoint端点,即可获取到需要采集的监控数据。
一般来说可以将Exporter分为2类:
• 直接采集:这一类Exporter直接内置了对Prometheus监控的支持,比如cAdvisor,Kubernetes,Etcd,Gokit等,都直接内置了用于向Prometheus暴露监控数据的端点。
• 间接采集:间接采集,原有监控目标并不直接支持Prometheus,因此我们需要通过Prometheus提供的Client Library编写该监控目标的监控采集程序。例如: Mysql Exporter,JMX Exporter,Consul Exporter等。
AlertManager
在Prometheus Server中支持基于PromQL创建告警规则,如果满足PromQL定义的规则,则会产生一条告警,而告警的后续处理流程则由AlertManager进行管理。在AlertManager中我们可以与邮件,Slack等等内置的通知方式进行集成,也可以通过Webhook自定义告警处理方式。AlertManager即Prometheus体系中的告警处理中心。
PushGateway
由于Prometheus数据采集基于Pull模型进行设计,因此在网络环境的配置上必须要让Prometheus Server能够直接与Exporter进行通信。 当这种网络需求无法直接满足时,就可以利用PushGateway来进行中转。可以通过PushGateway将内部网络的监控数据主动Push到Gateway当中。而Prometheus Server则可以采用同样Pull的方式从PushGateway中获取到监控数据。
外传
😜 原创不易,如若本文能够帮助到您的同学
🎉 支持我:关注我+点赞👍+收藏⭐️
📝 留言:探讨问题,看到立马回复
💬 格言:己所不欲勿施于人 扬帆起航、游历人生、永不言弃!🔥