2020年认证杯SPSSPRO杯数学建模C题(第一阶段)抗击疫情,我们能做什么全过程文档及程序

2020年认证杯SPSSPRO杯数学建模

C题 抗击疫情,我们能做什么

原题再现:

  2020 年 3 月 12 日,世界卫生组织(WHO)宣布,席卷全球的冠状病毒引发的病毒性肺炎(COVID-19)是一种大流行病。世卫组织上一次宣布大流行是在 2009 年的 H1N1 流感爆发期间,该病感染了世界近四分之一的人口。但是,当时该决定因制造了不必要的恐慌而受到批评。SARS 尽管影响了 26 个国家,但仍未被认为是大流行病,MERS 也没有被认为是大流行病。世卫组织表示,大流行是“新疾病的全球传播”。对于达到大流行水平与否,当下没有定量的严格标准,也没有触发该定义的病例或死亡数量阈值。也就是说“大流行”特征所指的不是疾病的严重性,而是疾病传播的广泛程度。目前,在全球已有超过 200 个国家/地区报告了病毒感染病例。但由于各国的人口和经济情况差别较大,病毒检测能力和国家防疫政策都不尽相同,所以报告的病例是否就真实反映了病毒传播的情况? 如何能够对于疫情情况给出更加有效的量化指标,这是世卫组织非常关心的问题。
  “无症状感染者”全称是“新冠病毒无症状感染者”,指无临床症状、但呼吸道等标本新冠病毒病原学检测呈阳性者。无症状感染者可分为两种情形:一是感染者核酸检测呈阳性,经过 14 天潜伏期的观察,均无任何可自我感知或可临床识别的症状与体征,始终为无症状感染状态;二是感染者核酸检测呈阳性,采样时无任何可自我感知或可临床识别的症状与体征,但随后出现某种临床表现,即处于潜伏期的“无症状感染”状态。无症状感染者存在传染性。但传染期长短、强弱有待确定。很多人担心“无症状感染者”会成为新的传染源,那么,到底会不会呢? 部分专家认为鉴于无症状感染者的呼吸道标本能检出病原核酸,但由于无咳嗽、打喷嚏等临床症状,病原排出体外引起传播的机会较确诊病例相对少一些。另外,《英格兰医学杂志》上近日有报告说,一名感染者从未出现症状,但所释放的病毒量与出现症状的人相当。因此,也有一部分科学家猜测:一些感染者“在症状轻微或无症状时具有高度传染性”。但要强调的是,类似状况的患者规模仍不清楚。
  早在 2 月 17 日,中国疾控中心流行病学组在《中华流行病学杂志》上发表的大规模流调论文就提到,截至 2 月 11 日,中国疾控中心共收到国内报告病例 72314 例,含有 889 例无症状感染者,比例约占 1.2%。日本一个研究小组的报告称(研究论文 3 月 12 日刊登在 Eurosurveillance 杂志),对钻石公主号游轮上的 634 名新冠肺炎病例进行统计模型分析,估计无症状感染者所占比例为 17.9%。张文宏团队撰文指出,以目前部分研究为例,感染新冠病毒的人群中,无症状感染者的比例大约为 18%—31%。不过有些患者仅出现很轻微的症状,在隔离观察期间也不一定会被发现,也常常被认为是无症状。无症状感染者的识别具有一定的困难,如何快速地、准确地、最小成本地识别和判断也是世界各国非常关注的问题。
  第一阶段问题: 请你的团队通过深入的数据分析,建立合理的数学模型来解决以下问题:
  1. 建立数学模型,综合考虑人口数、感染数量、病死人数、疫情持续时间、经济状况、医疗条件、人口密度、防疫政策等因素,给出一个合理的界定“流行”(Epidemic) 和“大流行”(Pandemic) 病的定量条件。
  2. 考虑到无症状感染者具有一定的传染性,且不容易发现,但全民进行病毒检测又成本太高,且时间过长,不利于复工复产,我们试图寻找一种更为有效的方法来最大限度地降低无症状感染者的传播风险,比如对一个地区进行抽样病毒检测来评估该地区的无症状感染者的分布情况,再制定不同的隔离和检测措施。请结合问题一的模型,针对一两个国家(或地区),给出切实可行的病毒检测抽样方案,并给出无症状感染者分布预测模型和针对相应预测结果的应对方案。
  3. 给世界卫生组织写一封信,阐述你的团队对于疫情情况的判断,并给出一些防控建议和降低风险的思路。
  附件一是一些网络上公开的疫情数据,更新的数据可以从https://github.com/datasets/covid-19下载。

整体求解过程概述(摘要)

  新型冠状病毒(COVID-9)的爆发给世界经济和人民生活都带来了重创。面对流行病的爆发,如何评估和预测疫情,是有效控制疫情的最佳办法。为了解决这个问题,本文通过构建流行度评价体系,利用因子分析法对指标进行赋权,并以中国为例统计流行度的变化情况,通过均值-标准差控制图法计算出流行度阈值来界定“流行”(Epidemic)和“大流行“(Pandemic)病。然后在传统 SEIR 模型基础上,进行了四项修正,,对无症状感染者的分布进行预测。根据模型的结果,我们给世界卫生组织ᨀ供了一些防控建议,具体如下。
  针对问题一,我们使用因子分析法和均值-标准差控制图法构建了疾病流行程度评估模型。首先流行因素和指标选取原则选取指标,构建了疾病流行度指标体系,分别 3个一级指标和 8 个二级指标,统计好相关数据后,利用极差归一法对数据进行标准化处理,消除其数量级或量纲上的不同。然后利用因子分析法赋予各指标的权重,我们得到了流行度的计算公式。定义好疾病流行开始时间后,我们计算出了中国在疫情期间的每天流行度,利用均值-标准差控制图法计算出流行度阈值,最终得出流行病的界定阈值为流行度在 52.86~82.14,大流行病的界定阈值为大于 82.14。
  针对问题二,我们对 SEIR 模型进行修正构建了无症状感染者的分布预测模型。首先我们构建了基础的 SEIR 模型,为了使模型可以更加准确地模拟 COVID-19 疫情发展趋势,我们结合世界各地 COVID-19 疫情实况对 SEIR 模型进行了四项修正,并且通过对中国 COVID-19 疫情发展趋势的模拟仿真和对湖北省无症状感染者分布预测效果的评估验证了修正的 SEIR 模型准确性。最后我们使用模型对湖北省、黑龙江省和广东省的无症状感染者分布预测,得到了这三个当前无症状感染者分布较密集省份未来无症状感染者分布走势和无症状感染者消失的大致日期。
  针对问题三,我们基于前两问的结果,ᨀ出了相应的疫情应对方案。ᨀ前检测出感染者可以有效地预防疫情的传播,因此我们首先需要有效地发现感染人员,对人群进行抽样检测。我们根据流行程度的不同,我们对不同的地区采取不同的抽样比例和抽样人群,形成不同的抽样策略。其次,我们根据国家卫生健康委员会和世界卫生组织有关病毒检测的指导文件,设计了我们的病毒检测方案。最后,如果发现无症状患者,要制定相应的隔离措施。我们根据无症状患者预测分布的结果划分了 3 种不同的等级,根据等级的不同制定了对应的隔离方案。
  最后,我们总结了模型的内容和结果,给世界卫生组织ᨀ供的防疫的建议和具体的风险降低方案。

问题分析:

  问题 1 的分析
  对于如何定量界定“流行”与“大流行”,需要利构建一个疾病流行度指标体系。具体的做法思想是如何找到流行度评价的指标,并对指标进行相应的赋权。指标需要用数据表示,考虑到指标之间的量级与量纲不同,因此,要用极差归一法对各项指标进行标准化处理。标准化数据后,得到流行度的计算公式,最后根据该公式结合均值-标准差算法定量得出流行度的阈值,根据阈值构建疾病流行度指标体系从而定量界定“流行”与“大流行”。
  问题 2 的分析
  对于预测无症状感染人群的分布情况,需要构建一个模型进行疫情发展趋势的模拟仿真和预测无症状感染分布预测。首先,考虑到 COVID-19 是有着相对较长潜伏期的传染病,再结合各地实际疫情,在经典的 SEIR 模型基础上进行修正,从而得到修正 SEIR模型。其次,评估和验证该模型在中国疫情发展趋势的模拟仿真和湖北省无症状感染人群的分布预测的准确性。最后,使用该模型结合现有数据对湖北省、黑龙江省和广东省无症状感染群人分布进行预测。
  问题 3 的分析
  在前两个问题所得到的模型基础上,根据疫情严重程度和无症状感染人群密度等级对地区进行归类,再根据不同的疫情严重程度和无症状感染人群密度等级分别ᨀ出相应针对性的抽样检测隔离方案。具体做法是先根据疫情严重程度采用不同的抽样方案,例如抽样来源不同;然后再根据各地区不同的无症状感染人群密度等级分别采用不同的隔离方案,例如隔离地点和检测内容不同。最后,根据以上结果,结合实际情况,给出具体的防控管理政策,从而降低无症状感染人群传播病毒的风险和病毒在各地区传播的风险。
在这里插入图片描述

模型假设:

  1. 假设题目所给的数据真实可靠;
  2. 假设病毒只通过人传人的途径进行传播;
  3. 假设现阶段没有能够治疗的特效药和疫苗;
  4. 假设外界因素对各种概率的值无影响;
  5. 假设各地区出生人数、死亡人数和国际间的人口流动对模型无影响;

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

%SEIR模型
clear;clc;
%参数设置
N=11082000;%武汉人口数
tf=1;%道路通行阻碍系数
pe=1;%人口密度阻碍系数
fl=0.1;%由政府政策引起的人口流动性的变化
Bf=0.5;%因防控阻碍传染率系数
hy=1;%医疗水平影响治愈率系数
hk=1;%医疗水平影响死亡率系数
mh=1;%医疗能力水平系数
I=2;%传染者
R=0;%康复者
D=0;%死亡患者数量
E=0;%潜伏者
S=N-I;%易感染者
r=50;%接触病患的人数
a=0.0125;%潜伏者患病概率
B=0.8;%感染概率
y=0.014384;%日康复概率
k=0.002542;%日致死率
r=r*tf*pe;
r1=r;%潜伏者接触的人数
T=20:1000;
nt=0.1;%日有效核酸检测系数
co=2000;%日核酸检测成本
for idx =1:length(T)-1if idx>14B=B*Bf;r=r*fl;r1=r1*fl;mh=1.5;end%进行检测
%     B=B*Bf;
%     r=r*fl;
%     r1=r1*fl;
%     mh=1.5;
%     E(idx)=E(idx)-nt*co;
%     r1=r1*0.1;
%     disp('实行核酸检测')if idx>13&&idx<40E(idx)=E(idx)-nt*co;r1=r1*0.2;disp('实行核酸检测')elser1 =r;   endS(idx+1)=S(idx)-r*B*I(idx)*S(idx)/N;%易感者E(idx+1)=E(idx)+r1*B*S(idx)*I(idx)/N-a*E(idx);%潜伏者I(idx+1)=I(idx)+a*E(idx)-(y*mh+k/mh)*I(idx);%患病者R(idx+1)=R(idx)+y*mh*I(idx);%康复者D(idx+1)=D(idx)+k*I(idx)/mh;%死亡病例endB={'01-19','02-08','02-28','03-19','04-08','04-28','05-18','06-07','06-27','07-17','08-06'};
plot(T,E,T,I,T,R,T,D);
grid on;
set(gca,'XTickLabel',B)
xlabel('日期');
ylabel('人数');
legend('潜伏者','传染者','康复者','死亡者');
%title('疫情情况');
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/595002.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解析大语言模型LLM的幻觉问题:消除错觉、提高认知

文章目录 前言一、幻觉介绍二、幻觉产生的原因三、幻觉的现象四、幻觉的分类五、幻觉解决方案六、幻觉待解决问题后记 前言 在人类的感知和认知过程中&#xff0c;幻觉一直是一个被广泛讨论和研究的问题。幻觉指的是一种虚假的感知或认知经验&#xff0c;使我们看到、听到或感…

企业微信开发:自建应用:应用形态(网页,小程序,默认页面)

概述 问题&#xff1a; 企业微信&#xff0c;自建应用&#xff0c;应该实现成什么样子&#xff1f;应用里是一个网页应用吗&#xff1f; 企业微信自建应用可以实现为多种形态&#xff0c;根据实际需求和功能设计&#xff0c;它可以是一个网页应用、一个小程序或者结合企业微信提…

【Pytorch】学习记录分享9——新闻数据集文本分类任务实战

【Pytorch】学习记录分享9——PyTorch新闻数据集文本分类任务 1. 认为主流程code2. NLP 对话和预测基本均属于分类任务详细见3. Tensorborad 1. 认为主流程code import time import torch import numpy as np from train_eval import train, init_network from importlib impo…

Python基础-05(输出输入、if、if else和elif)

文章目录 前言一、输出&#xff08;print()&#xff09;和输入&#xff08;input()&#xff09;二、if、if else、elif1.if2.if else3.关于输入input的默认值4.elif 前言 今天复习一些非常基础的内容&#xff0c;以及if、if else和elif语句 一、输出&#xff08;print()&…

CMake入门教程【核心篇】添加应用程序(add_executable)

&#x1f608;「CSDN主页」&#xff1a;传送门 &#x1f608;「Bilibil首页」&#xff1a;传送门 &#x1f608;「本文的内容」&#xff1a;CMake入门教程 &#x1f608;「动动你的小手」&#xff1a;点赞&#x1f44d;收藏⭐️评论&#x1f4dd; 文章目录 1. 概述2. 使用方法2…

ARM Cortex-A学习(3):MMU内存管理单元

内存管理单元(MMU)负责虚拟地址到物理地址的转换。MMU通过翻译表将程序使用的虚拟地址映射到实际的物理内存位置&#xff0c;实现对内存的动态管理和隔离。这不仅允许更灵活的内存分配&#xff0c;还提高了系统的安全性和稳定性。了解MMU的工作原理对于开发底层代码、BootLoade…

【数据结构】二叉树的创建和遍历:前序遍历,中序遍历,后序遍历,层次遍历

目录 一、二叉树的定义 1、二叉树的定义 2、二叉树的五种形态 二叉树的子树 &#xff1a; 3、满二叉树与完全二叉树 4、二叉树的性质 5、二叉树的存储结构 1、顺序存储 ​编辑 2、链式存储 二、二叉树的遍历 按照前序序列构建二叉树 1、前 (先) 序遍历(Preorder …

神经网络:激活函数的介绍

神经网络的激活函数是一种非线性函数&#xff0c;它被应用于每个神经元的输出&#xff0c;以引入非线性性质到网络中。 激活函数的目的是将输入转换为输出&#xff0c;并且将输出限制在特定的范围内。它们非常重要&#xff0c;因为线性变换&#xff08;例如加法和乘法&#xf…

【UEFI基础】EDK网络框架(环境配置)

环境配置 为了能够让使用测试BIOS的QEMU与主机&#xff08;就是指普通的Windows系统&#xff0c;我们使用它来编译BIOS和启动QEMU虚拟机&#xff09;通过网络连接&#xff0c;需要额外的配置。 首先是下载和安装OpenVPN&#xff08;这里安装的是OpenVPN-2.5.5-I601-amd64.msi…

重新认识一下 vue3 应用实例

重新认识一下 vue 应用实例 &#x1f495; 创建应用实例 每个 Vue 应用都是通过 createApp 函数创建一个新的 应用实例 应用实例必须在调用了 .mount() 方法后才会渲染出来。该方法接收一个“容器”参数&#xff0c;可以是一个实际的 DOM 元素或是一个 CSS 选择器字符串 //…

【GoLang入门教程】Go语言几种标准库介绍(四)

编程语言的未来&#xff1f; 文章目录 编程语言的未来&#xff1f;前言几种库fmt库 (格式化操作)关键函数&#xff1a;示例 Go库标准库第三方库示例 html库(HTML 转义及模板系统)主要功能&#xff1a;示例 总结专栏集锦写在最后 前言 上一篇&#xff0c;我们介绍了debug、enco…

魔术表演Scratch-第14届蓝桥杯Scratch省赛真题第1题

1.魔术表演&#xff08;20分&#xff09; 评判标准&#xff1a; 4分&#xff1a;满足"具体要求"中的1&#xff09;&#xff1b; 8分&#xff1a;满足"具体要求"中的2&#xff09;&#xff1b; 8分&#xff0c;满足"具体要求"中的3&#xff09…

GPU的硬件架构

SM: streaming Multiprocessor 流多处理器 sm里面有多个(sp)cuda core 32个线程称为一个warp&#xff0c;一个warp是一个基本执行单元 抽象概念&#xff1a;grid 网格 block 块 thread 线程 块中的线程大小是有讲究的&#xff0c;关乎到资源的调度&#xff0c;一般是128&#x…

关于“Python”的核心知识点整理大全59

目录 19.3.2 将数据关联到用户 1. 修改模型Topic models.py 2. 确定当前有哪些用户 3. 迁移数据库 注意 19.3.3 只允许用户访问自己的主题 views.py 19.3.4 保护用户的主题 views.py views.py 19.3.6 将新主题关联到当前用户 views.py 往期快速传送门&#x1f44…

[DevOps-02] Code编码阶段工具

一、简要说明 在code阶段,我们需要将不同版本的代码存储到一个仓库中,常见的版本控制工具就是SVN或者Git,这里我们采用Git作为版本控制工具,GitLab作为远程仓库。 Git安装安装GitLab配置GitLab登录账户二、Git安装 Git官网 Githttps://git-scm.com/

卫星互联网与MEC融合方案研究

卫星互联网与MEC融合方案研究 作者&#xff1a;温特、王立中、司鹏、颜明明、马恬、郭伊蒙 中国卫通集团股份有限公司 本文首发&#xff1a;第十九届卫星通信学术年会 摘 要&#xff1a;在卫星互联网中引入移动边缘计算(MEC)技术可有效提高用户体验质量&#xff0c;降低运营成…

MySQL基础篇(一)SQL

视频地址: 黑马程序员 MySQL数据库入门到精通&#xff0c;从mysql安装到mysql高级、mysql优化全囊括 SQL&#xff0c;全称 Structured Query Language&#xff0c;结构化查询语言。操作关系型数据库的编程语言&#xff0c;定义了一套操作关系型数据库统一 标准。 一、SQL通用语…

electron自定义菜单

创建menu.js const { app, Menu } require("electron"); const createMenu () > {const menu [{label: "菜单",submenu: [{label: "新增",click: () > {},}, ],},{label: "关于",submenu: [{label: "新增",click:…

Java数据结构:1. 数据结构前置知识

文章目录 一、初识数据结构二、初识集合框架1. 什么是集合框架2. 集合框架的重要性3. 背后所涉及的数据结构以及算法 三、时间复杂度空间复杂度1. 算法效率2. 时间复杂度&#xff08;1&#xff09;概念&#xff08;2&#xff09;大O的渐进表示法&#xff08;3&#xff09;推导大…

计算机系统基础

C 语言相关内容省略&#xff0c;复习自用&#xff0c;仅供参考~ 概述 冯诺伊曼结构 存储程序工作方式&#xff1a;将事先编好的程序和原始数据送入主存后才能执行程序&#xff0c;程序被启动执行后&#xff0c;计算机能在不需要操作人员干预下自动完成逐条指令取出和执行的任…