【Java进阶篇】Java中Timer实现定时调度的原理(解析)

在这里插入图片描述

Java中Timer实现定时调度的原理

  • ✔️ 引言
  • ✔️JDK 中Timer类的定义
  • ✔️拓展知识仓
    • ✔️优缺点


✔️ 引言


Java中的Timer类是用于计划执行一项任务一次或重复固定延迟执行的简单工具。它使用一个名为TaskQueue的内部类来存储要执行的任务,这些任务被封装为TimerTask对象。

Timer实现定时调度的基本原理:

  1. 创建 Timer 对象:当你创建一个Timer对象时,它会实例化一个线程(不是守护线程),这个线程用于执行计划任务。
  2. 添加任务:你可以使用schedulescheduleAtFixedRate方法向Timer添加任务。这些方法接受一个TimerTask对象和一个延迟时间(以及可选的重复间隔)。
  3. 内部存储Timer内部使用一个优先级队列(具体是TaskQueue类)来存储要执行的任务。队列中的每个元素都是一个表示要执行的任务的TimerTask对象。队列根据任务的执行时间进行排序,以确保任务按照预定的时间顺序执行。
  4. 执行线程Timer类的线程在后台运行,并定期检查任务队列。当线程发现队列中有任务到达其预定的执行时间时,它会从队列中取出该任务并执行它。
  5. 处理重复任务:对于需要重复执行的任务,Timer会重新计算下一个执行时间,并将任务重新放入队列中。这样,当任务的下一次执行时间到达时,线程会再次从队列中取出并执行它。
  6. 取消任务:你可以使用Timer.cancel()方法来取消所有已调度的任务,或者使用TimerTask.cancel()方法来取消单个任务。取消的任务将从队列中移除,并且不会再次调度。
  7. 注意事项:虽然Timer在简单场景下可以很好地工作,但它并不是最适合所有场景的定时任务解决方案。特别是,在需要更复杂的调度需求或在并发环境中,使用ScheduledExecutorService可能是更好的选择。

总而言之,Java中的Timer类通过内部使用一个优先级队列来存储和管理定时任务,并通过一个单独的线程来检查和执行这些任务,从而实现了定时调度功能。


✔️JDK 中Timer类的定义


Java中的Timer类是一个定时调度器,用于在指定的时间点执行任务。JDK 中Timer类的定义如下:


public class Timer {/****     The timer task queue.This data structure is shared with the timer*     thread. The timer produces tasks, via its various schedule calls,*     and the timer thread consumes, executing timer tasks as appropriate,*     and removing them from the queue when they're obsolete.*/private final TaskOueue queue = new TaskOueue() ;/***     The timer thread*/private final TimerThread thread = new TimerThread(queue);
}

以上就是 Timer 中最重要的两入成员变量:


1、TaskQueue: 一个任务队列,用于存储已计划的定时任务。任务队列按照任务的执行时间进行排序,确保最早执行的任务排在队列前面。在队列中的任务可能是一次性的,也可能是周期性的。


2、TimerThread : Timer 内部的后台线程,它负责扫描 TaskQueue 中的任务,检查任务的执行时间,然后在执行时间到达时执行任务的 run() 方法。TimerThread 是一个守护线程,因此当所有非守护线程完成时,它会随之终止。


任务的定时调度的核心代码就在TimerThread 中:


/**
*   @author xinbaobaba
*/class TimerThread extends Thread {//标志位boolean newTasksMayBeScheduled = true;/***    存储 TimerTask 的队列*/private TaskQueue queue ;TimerThread(TaskQueue queue) {this .queue = queue;}public void run() {try {mainLoop();} finally {synchronized (queue) {newTasksMayBeScheduled = false;queue.clear();}}}/***    主要的计时器循环。*/private void mainLoop() {while (true) {try {TimerTask task;boolean taskFired;synchronized (queue) {//等待队列变为非空while (queue.isEmpty() && newTasksMayBeScheduled)queue .wait() ;if (queue.isEmpty())// 队列为空,将永远保持为空; 线程终止break;//队列非空;查看第一个事件并执行相应操作long currentTime, executionTime;task = queue .getMin();synchronized (task.lock) {if (task.state == TimerTask.CANCELLED) {queue .removeMin() ;//无需执行任何操作,再次轮询队列continue; }currentTime = System.currentTimeMillis();executionTime = task.nextExecutionTime;if (taskFired = (executionTime <= currentTime)) {if (task.period == 0) {// 非重复,移除queue.removeMin);task.state = TimerTask.EXECUTED;} else {// 重复任务,重新安排queue.rescheduleMin(task.period <  ? currentTime   -   task.period : executionTime + task.period);}}}if (!taskFired)  // 任务尚未触发;等待queue .wait(executionTime - currentTime);}if (taskFired) // 任务触发;运行它,不持有锁task.run();} catch (InterruptedException e) {}}}
}

可以看到,TimerThread的实际是在运行mainLoop方法,这个方法一进来就是一个while(true)的循环,他在循环中不断地从TaskQueue中取出第一个任务,然后判断他是否到达执行时间了,如果到了,就触发任务执行。否则就继续等一会再次执行。


不断地重复这个动作,从队列中取出第一个任务进行判断,执行。。。


这样只要有新的任务加入队列,就在队列中按照时间排队,然后唤醒timerThread重新检查队列进行执行就可以了。代码如下:


private void sched(TimerTask task, long time, long period) {if (time < 0) {throw new IllegalArgumentException("Illegal execution time.");}// Constrain value of period sufficiently to prevent numeric// overflow while still being effectively infinitely large.if (Math.abs(period) > (Long.MAX VALUE >> 1))period >>= 1;synchronized(queue) {if (!thread.newTasksMayBeScheduled)throw new IllegalstateException("Timer already cancelled.");	synchronized(task.lock) {if (task.state != TimerTask.VIRGIN) throw new IllegalstateException("Task already scheduled or cancelled");task.nextExecutionTime = time;task.period = period;task.state = TimerTask.SCHEDULED;}//新任务入队列queue.add(task);//唤醒任务if (queue.getMin() == task)queue .notify();}
}

✔️拓展知识仓


✔️优缺点


Timer 类用于实现定时任务,最大的好处就是他的实现非常简单,特别的轻量级,因为它是Java内置的,所以只需要简单调用就行了。


但是他并不是特别好的解决定时任务的方案,因为他存在以下问题:


1、Timer内部是单线程执行任务的,如果某个任务执行时间较长,会影响后续任务的执行


2、如果任务抛出未捕获异常,将导致整个 Timer 线程终止,影响其他任务的执行


3、Timer 无法提供高精度的定时任务。因为系统调度和任务执行时间的不确定性,可能导致任务执行的时间不准确


4、虽然可以使用 cancel 方法取消任务,但这仅仅是将任务标记为取消状态,仍然会在任务队列中占用位置,无法释放资源。这可能导致内存泄漏


5、当有大量任务时,Timer 的性能可能受到影响,因为它在每次扫描任务队列时都要进行时间比较


6、Timer执行任务完全基于JVM内存,一旦应用重启,那么队列中的任务就都没有了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/593979.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python搭建代理IP池实现存储IP的方法

目录 前言 1. 介绍 2. IP存储方法 2.1 存储到数据库 2.2 存储到文件 2.3 存储到内存 3. 完整代码示例 总结 前言 代理IP池是一种常用的网络爬虫技术&#xff0c;可以用于反爬虫、批量访问目标网站等场景。本文介绍了使用Python搭建代理IP池&#xff0c;并实现IP存储的…

三菱结构化While指令的使用

最近在交流群中&#xff0c;有人就while指令使用错误进行了讨论&#xff0c;问题的总的原因是对While指令理解不到位导致&#xff0c;PLC看门狗报错&#xff01; 错误使用While指令导致看门狗报错 下面就While指令的使用进行说明 WHILE语句。 WHILE语句执行时首先检测条件。…

成为一名合格的前端架构师,前端知识技能与项目实战教学

一、教程描述 本套前端架构师教程&#xff0c;大小35.94G&#xff0c;共有672个文件。 二、教程目录 01.node介绍和环境配置&#xff08;共6课时&#xff09; 02.ES6语法&#xff08;共5课时&#xff09; 03.node基础&#xff08;共29课时&#xff09; 04.Express框架&am…

大语言模型LLM微调技术:P-Tuning

1 引言 Bert时代&#xff0c;我们常做预训练模型微调&#xff08;Fine-tuning&#xff09;&#xff0c;即根据不同下游任务&#xff0c;引入各种辅助任务loss和垂直领域数据&#xff0c;将其添加到预训练模型中&#xff0c;以便让模型更加适配下游任务的方式。每个下游任务都存…

Redis:原理速成+项目实战——Redis实战4(解决Redis缓存穿透、雪崩、击穿)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;Redis&#xff1a;原理项目实战——Redis实战3&#xff08;Redis缓存最佳实践&#xff08;问题解析高级实现&#xff09;&#x…

计算器——可支持小数的任意四则运算(中缀表达式转为后缀表达式算法)

中缀表达式转为后缀表达式的原理过程主要包括以下步骤&#xff1a; 1. 初始化两个栈&#xff0c;一个用于存储操作数&#xff0c;一个用于存储运算符。2. 从左到右扫描中缀表达式的每个字符。3. 如果遇到数字&#xff0c;则直接将其压入操作数栈。4. 如果遇到运算符&#xff0c…

CSS 中间位置翻转动画

<template><div class"container" mouseenter"startAnimation" mouseleave"stopAnimation"><!-- 旋方块 --><div class"box" :class"{ rotate-hor-center: isAnimating }"><!-- 元素内容 -->…

msvcp140.dll丢失的错误解决办法,msvcp140.dll丢失的原因

如果你的电脑中正处于msvcp140.dll丢失或找不到msvcp140.dll的问题&#xff0c;那么可以尝试使用下面的方法进行解决msvcp140.dll丢失的问题。其实msvcp140.dll文件丢失的问题解决办法也很简单&#xff0c;但是出现msvcp140.dll丢失的问题却可能是有很多原因。接下来就给大家分…

约束满足问题简介

约束满足问题的定义 约束满足问题&#xff08;Constraint Satisfying Problem, CSP&#xff09; – 由一个变量集合和一个约束集合定义&#xff1b; – 每个变量都有一个非空可能值域&#xff1b; – 每个约束指定了包含若干变量的一个子集内各变量的赋值范围。 例如&…

互联网加竞赛 Yolov安全帽佩戴检测 危险区域进入检测 - 深度学习 opencv

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; Yolov安全帽佩戴检测 危险区域进入检测 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;4分 该项目较为新颖&am…

打造专业开发者指南:针对ShardingProxy分库分表解决策略的深度剖析 – 详解部署、使用、服务治理与优化技巧

一、 ShardingProxy快速使用 ShardingProxy的功能同样是分库分表&#xff0c;但是他是一个独立部署的服务端&#xff0c;提供 统一的数据库代理服务。注意&#xff0c;ShardingProxy目前只支持MySQL和PostgreSQL。并且&#xff0c;客户端连接ShardingProxy时&#xff0c;最好使…

多模态大模型Vary:扩充视觉Vocabulary,实现更细粒度的视觉感知

前言 现代大型视觉语言模型(LVLMs)具有相同的视觉词汇- CLIP&#xff0c;它可以涵盖大多数常见的视觉任务。然而&#xff0c;对于一些需要密集和细粒度视觉感知的特殊视觉任务&#xff0c;例如文档级OCR或图表理解&#xff0c;特别是在非英语场景下&#xff0c;clip风格的词汇…

Springboot集成RabbitMq二

接上一篇&#xff1a;Springboot集成RabbitMq一-CSDN博客 1、搭建项目-消费者 与之前一样 2、创建配置类 package com.wym.rabbitmqconsumer.utils;import org.springframework.amqp.core.Binding; import org.springframework.amqp.core.BindingBuilder; import org.spring…

JDK17 - 开发者视角,从 JDK8 ~ JDK17 都增加了哪些新特性

目录 前言 一、站在开发视角&#xff0c;从 JDK8 升级到 JDK17 都有哪些新特性 1.1、JDK8 新特性 1.1.1、Optional 类 a&#xff09;简介 b&#xff09;使用方法 c&#xff09;使用场景 1.2、JDK9 新特性 1.2.1、Optional - ifPresentOrElse 解决 if-else 1.2.2、Opt…

Java程序设计阶段测试1

一、单选题&#xff08;共15题&#xff1b; 共30.0分&#xff09; 2.0分 1、以下哪个是Java应用程序main方法的有效定义? A.public static void main(); B.public static void main( String args ); C.public static void main( String args[] ); D.public static boolea…

Go Lang Fiber介绍

利用GoLang Fiber进行高性能Web开发 在不断发展的Web开发世界中&#xff0c;选择合适的框架至关重要。速度、简洁性和强大的功能集是每个开发者都追求的品质。在使用Go构建Web应用时&#xff0c;“Fiber”作为一个强大且轻量级的框架在众多选择中脱颖而出。在这份全面的指南中…

扩展:键盘录入笔记(next()、nextLine()、nextInt()、nextDouble())

文章目录 一&#xff0c;键盘录入涉及到的方法如下&#xff1a;1&#xff09;next&#xff08;&#xff09;、nextLine&#xff08;&#xff09;&#xff1a;代码示例&#xff1a;代码示例&#xff1a; 2&#xff09;nextInt&#xff08;&#xff09;&#xff1a;代码示例&…

无辅源电压继电器 RWY-D2/3 180-440VAC 导轨安装 josef约瑟

RWY-D1型电压继电器&#xff1b; RWY-D2型电压继电器&#xff1b; 一、 概述 RWY-D系列电压继电器&#xff08;以下简称本继电器&#xff09;用于发电机、变压器和输电线的电器保护装置中&#xff0c;作为过电压保护或低电压闭锁的启动原件。本继电器为集成电路静态型继电器…

设计模式--适配器模式

适配器模式 适配器模式&#xff08;Adapter&#xff09;&#xff0c;将一个类的接口转换为客户希望的另一个接口&#xff0c;Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 系统的数据和行为都正确&#xff0c;但接口不符合时&#xff0c;我们应该…

Python入门学习篇(十七)——封装、继承、多态

1 封装 1.1 理解 属性和方法书写到类里面的操作即为封装 封装可以理解成私有化属性和私有化方法1.2 示例代码 class Person():p_num 0 # 用于统计数量def __init__(self, name, age, sex, job):# __name为私有化属性self.__name nameself.age ageself.sex sexself.job …