C++标准库STL容器详解

目录

  • C++标准模板库STL容器
    • 容器分类
    • 容器通用接口
  • 顺序容器
    • vector
    • list
    • deque
  • 容器适配器
    • queue
    • stack
    • priority_queue
  • 关联容器:红黑树
    • set
    • multiset
    • map
    • multimap
  • 关联容器:哈希表
    • unordered_set和unordered_multiset
    • unordered_map和unordered_multimap
  • 附1:红黑树数据结构
  • 附2:哈希表数据结构
  • 附3:reserve和resize

C++标准模板库STL容器

容器都是类模板,它们实例化后就成为容器类。用容器类定义的对象称为容器对象。对象或变量插入容器时,实际插入的是对象或变量的一个复制品。
在这里插入图片描述

容器分类

顺序容器
1、元素在容器中的位置同元素的值无关,即容器不是排序的。
2、顺序容器包括:vector、deque、list。

关联容器
1、关联容器内的元素是有规则排列的(排序或加入哈希桶),插入元素时,容器会按一定的排序规则将元素放在适当的位置上。因为按规则排列,关联容器在查找时具有非常好的性能。
2、关联容器包括:set、multiset、map、multimap、unordered_set、unordered_multiset、unordered_map、std::unordered_multimap等。
3、不能修改关联容器中key的值,因为元素修改后容器并不会自动重新排序。正确的做法的是, 先删除该元素,再插入新元素。

容器适配器
1、STL在两类容器的基础上屏蔽一部分功能,突出或增加另一部分功能,实现了容器适配器。
2、STL中容器适配器有stack、queue、priority_queue三种,它们都是在顺序容器的基础上实现的。

容器通用接口

所有容器

int size( ) 返回容器对象中元素的个数
bool empty( ) 判断容器对象是否为空

顺序容器

front() 返回容器中第一个元素的引用
back() 返回容器中最后一个元素的引用
push_back() 在容器末尾增加新元素
pop_back() 删除容器末尾的元素
insert() 插入一个或多个元素

顺序容器和关联容器

begin( ) 返回指向容器中第一个元素的迭代器
end( ) 返回指向容器中最后一个元素后面的位置的迭代器
rbegin( ) 返回指向容器中最后一个元素的反向迭代器
rend( ) 返回指向容器中第一个元素前面的位置的反响迭代器
erase( ) 从容器中删除一个或几个元素
clear( ) 从容器中删除所有的元素
如果一个容器为空,则begin()和end()的返回值相等,rbegin()和rend()的返回值也相等

容器适配器

push:添加一个元素
top:返回顶部或对头的元素的引用
pop:删除一个元素

顺序容器

vector

在这里插入图片描述

1、动态数组,也叫可变长数组,在堆中分配内存,元素存放在连续的内存空间,支持下标随机访问,元素可重复,且是无序存放。
2、在头部或中间进行插入和删除操作时,会造成内存块的拷贝;对尾部进行插入和删除时一般不会拷贝内存;扩容时会内存拷贝。

扩容方式
开辟二倍的内存;旧的数据拷贝到新的内存;释放旧内存;重新指向新内存。

时间复杂度
1、[ ]或at()下标访问任意元素,时间复杂度是O(1)。
2、push_back尾部插入、pop_back尾部删除,时间复杂度O(1)。
3、insert插入、erase删除时间复杂度O(n)。

#include <vector>std::vector<int> _v;_v.push_back(20);//尾部添加元素_v.push_back(10);_v.push_back(10);//{20,10,10}printf("_v.front=%d\n",_v.front());//队首元素,_v.front=20printf("_v.back=%d\n",_v.back());//队尾元素,_v.back=10_v.pop_back();//移除尾部元素,{20,10}_v.insert(_v.begin() + 1, 30); //在指定的位置插入元素10的拷贝,{20,30,10}_v.erase(_v.begin() + 2);//删除指定位置的元素,{20,30}//遍历,可以使用下标遍历,也可以使用迭代器遍历auto iter = _v.begin();while(iter != _v.end()){printf("value=%d\n",*iter);iter++;}printf("_v[0]=%d,_v.at(1)=%d\n",_v[0],_v.at(1));//下标访问,越界crash,at抛出异常

打印

_v.front=20
_v.back=10
value=20
value=30
_v[0]=20,_v.at(1)=30

list

在这里插入图片描述

1、双向链表,存放在堆中,内存空间是不连续的,每个元素都存放在一块内存中,通过指针指向上一个元素和下一个元素。元素可重复,且是无序存放。
2、不需要扩容,添加元素时分配内存,删除元素时回收内存。
3、在任何位置添加和删除元素效率都很高,无需内存拷贝。
4、不能下标随机访问,访问任意元素效率低。

时间复杂度
1、访问首部和尾部是O(1),访问其他元素是O(n)。
2、push_back、push_front、insert插入是O(1),pop_front、pop_back、erase删除是O(1)。

#include <list>std::list<int> _l;_l.push_back(20);//尾部添加元素_l.push_back(30);_l.push_back(40);_l.push_front(10);//头部添加元素{10,20,30,40}printf("_l.front=%d\n",_l.front());//访问队首元素,_l.front=10printf("_l.back=%d\n",_l.back());//访问队尾元素,_l.back=40_l.pop_back();//移除尾部元素,{10,20,30}_l.pop_front();//移除头部元素,{20,30}//list迭代器只能++/--,不能+i随机访问_l.erase(_l.begin());//删除指定位置的元素,{30}_l.insert(++_l.begin(), 50); //在指定的位置插入元素10的拷贝,{30,50}//使用迭代器遍历,不能使用下标访问auto iter = _l.begin();while(iter != _l.end()){printf("value=%d\n",*iter);iter++;}

打印

_l.front=10
_l.back=40
value=30
value=50

deque

在这里插入图片描述

1、双端队列,deque类似于一个二维数组,由多个连续小空间拼接而成,引入map管理分段空间;map是一块连续的空间,map的每个元素是指向缓存区buffer的指针,每个缓存区buffer存储多个元素。
2、deque底层是假象的连续空间,实际上是分段连续的,为了“整体连续”和下标随机访问,deque定义了复杂的迭代器,实现随机访问。
3、deque结合了vector和list的优缺点,在队首和队尾进行插入和删除操作时效率高,遍历和排序效率低,中间插入和删除元素仍然存在内存拷贝,随机访问时需要计算数据在哪个buffer的第几个数据,效率低于vector。
4、deque功能全面,但效率普遍较低,实际应用时很少使用,通常作为stack和queue的底层默认容器(stack和queue不需要遍历,只需要在固定的一端或者两端进行操作,且deque扩容时不需要内存拷贝)。

时间复杂度
1、访问首部和尾部是O(1),下标访问其他元素时接近O(1)。
2、push_back、push_front插入是O(1),pop_front、pop_back删除是O(1)。
3、insert插入、erase删除时间复杂度O(n)。

支持首尾添加元素/访问元素/移除元素,支持下标访问和迭代器随机访问,几乎支持vector和list的所有功能。

#include <deque>std::deque<int> _d;_d.push_back(20);//尾部添加元素_d.push_back(30);_d.push_back(40);_d.push_front(10);//头部添加元素{10,20,30,40}printf("_d.front=%d\n",_d.front());//访问队首元素,_d.front=10printf("_d.back=%d\n",_d.back());//访问队尾元素,_d.back=40_d.pop_back();//移除尾部元素,{10,20,30}_d.pop_front();//移除头部元素,{20,30}_d.erase(_d.begin());//删除指定位置的元素,{30}_d.insert(_d.begin() + 1, 80); //在指定的位置插入元素,{30,80}//使用迭代器遍历auto iter = _d.begin();while(iter != _d.end()){printf("value=%d\n",*iter);iter++;}printf("_d[0]=%d,_d.at(1)=%d\n",_d[0],_d.at(1));//下标访问,越界crash,at抛出异常

打印

_d.front=10
_d.back=40
value=30
value=80
_d[0]=30,_d.at(1)=80

容器适配器

queue

在这里插入图片描述

1、队列,先进先出的数据结构,只支持在队尾添加元素,在队首删除元素。
2、queue可以指定底层容器(例如std::queue<int, std::list> q1),可以是基于数组的队列,也可以是基于链表的队列,即顺序队列和链表队列。
3、queue不提供迭代器访问,不能使用下标访问。

时间复杂度
1、插入push和删除pop是O(1)。
2、front和back访问是O(1)。

#include <queue>std::queue<int> _q;_q.push(10);//尾部添加元素_q.push(20);_q.push(30);_q.push(40);//{10,20,30,40}printf("_q.front=%d\n",_q.front());//访问队首元素,_q.front=10printf("_q.back=%d\n",_q.back());//访问队尾元素,_q.back=40_q.pop();//移除队首元素,{20,30,40}//不能使用下标和迭代器访问

打印

_q.front=10
_q.back=40

stack

在这里插入图片描述

1、数据栈,先进后出的数据结构,单端口进出,数据入栈只能加入栈顶,数据出栈也只能取栈顶的元素。
2、stack和queue数据结构类似,可以指定底层容器,默认是deque,分数组栈和链表栈。
3、stack不提供迭代器访问,不能使用下标访问。

时间复杂度
1、入栈push和出栈pop是O(1)。
2、top访问是O(1)。

#include <stack>std::stack<int> _s;_s.push(10);//顶部添加元素_s.push(20);_s.push(30);_s.push(40);//{10,20,30,40}printf("_s.top=%d\n",_s.top());//访问顶部元素,_s.top=40_s.pop();//移除顶部元素,{10,20,30}

priority_queue

1、优先级队列 priority_queue,常用来对数据进行优先级处理,比如优先级高的值在前面,常用堆(Heap)来实现,底层是以vector数组存储的完全二叉树。
2、优先级队列是一个拥有权值的queue,其内部元素按照元素的权值排列。权值较高者排在最前优先出队。
3、priority_queue不提供迭代器访问,不能使用下标访问。

堆是一种特殊的树,只要满足以下两个条件,就可以称这棵树为堆:
1、堆是一颗完全二叉树(完全二叉树要求,除了最后一层,其他节点个数都是满的,最后一层的节点都靠左排列)。
2、堆中的每一个节点都必须大于等于(或者小于等于)其子树中每个节点的值。

时间复杂度
1、使用vector数组构造priority_queue是O(n)。
2、插入元素push和移除堆顶pop是O(log(n))。
3、访问堆顶top是O(1)。

以下面程序举例,数据结构如下
在这里插入图片描述

#include <queue>std::vector<int> v{ 1,2,3,4,5,6,7,8,9,10 };std::priority_queue<int> p1(v.begin(), v.end());//使用vector数组构造大顶堆printf("p1.top=%d\n",p1.top());//访问顶部元素,.top=10//    std::priority_queue <int,std::vector<int>,std::greater<int> > _p2;//小顶堆std::priority_queue<int> _p;//默认大顶堆_p.push(56);//添加一个元素,自动排序_p.push(15);_p.push(70);_p.push(30);_p.push(10);_p.push(25);//{70,30,56,15,10,25}printf("_p.top=%d\n",_p.top());//访问顶部元素,_p.top=70_p.pop();//移除顶部元素,重新排序,{56,30,25,15,10}

打印

p1.top=10
_p.top=70

关联容器:红黑树

set

1、set是排序的、不重复的数据集合。
2、set元素类型是pair,存储键值对,且key和value必须相等。
3、set中的元素不能直接改变,可以先删除再添加。
4、set底层是以红黑树数据结构实现,节点存储值key。
5、set在内存中表现为一个排序的数组。
6、不支持下标访问。

时间复杂度
1、插入、删除、查找,都是严格在O(logn)时间内完成。

#include <set>std::set<int> s1;//定义一个空setstd::set<int>::iterator it;//s1的迭代器类型std::pair<std::set<int>::iterator,bool> ret;//插入数据的返回值类型,first是指向插入数据的迭代器,second标识是否插入成功// 单个数据插入for (int i=1; i<=5; ++i)s1.insert(i*10); // {10,20,30,40,50}ret = s1.insert(20); // 重复插入时失败,返回的迭代器指向容器中已存在的值,bool为falseif (ret.second==false)it=ret.first;  // "it" now points to element 20s1.erase(50);// 通过值删除元素,{10,20,30,40}s1.insert (it,25);//通过迭代器插入,{10,20,25,30,40}//区间插入int myints[]= {5,10,15};s1.insert (myints,myints+3);//迭代器遍历访问for (it=s1.begin(); it!=s1.end(); ++it)printf("*it=%d ",*it);printf("\n");auto iter = s1.find(20);//find查询元素是否在set集合中if(iter != s1.end()){printf("found 20\n");}

打印

*it=5 *it=10 *it=15 *it=20 *it=25 *it=30 *it=40 
found 20

multiset

multiset类似与set,区别在于multiset支持插入重复的元素,insert函数没有返回值,有重复元素时count函数返回值大于1。

map

1、map中存储的是键值对<key,value>,根据key有序排列,且key唯一。
2、map底层是以红黑树数据结构实现。
3、使用迭代器可以对value进行修改,但不能修改key,若要修改key,可以先删除再添加。
4、可以通过[key]或at(key)下标访问,若map中没有该key,则[ ]会向map中添加键值对,at()抛出异常或crash。
5、map在内存中表现为根据key排序的一组键值对。

时间复杂度
1、插入、删除、查找,都是严格在O(logn)时间内完成。

#include <map>std::map<int,std::string> map1;//定义一个空mapstd::map<int,std::string>::iterator it;//map1的迭代器类型//插入数据的返回值类型,first是指向插入数据的迭代器,second标识是否插入成功std::pair<std::map<int,std::string>::iterator,bool> ret;//1.通过pair<int, string>(1,"lilei") 构造pair元素map1.insert(std::pair<int, std::string>(1,"lilei"));//2.通过make_pair构造pair元素map1.insert(std::make_pair(2,"hmm"));//3.通过value_type构造pair元素map1.insert(std::map<int, std::string>::value_type(3,"zsan"));//4.[ ]下标插入map1[4] = "zsi";//5.emplace插入map1.emplace(5,"chw");ret = map1.emplace(2,"hmei");if(ret.second == false)//插入失败,返回falseprintf("ret.first=%s\n",ret.first->second.c_str());bool ret2 = map1.erase(1);//通过key删除元素,成功返回true,失败返回falseprintf("erase ret2=%d\n",ret2);//find查找keyauto iter_find  = map1.find(3);if(iter_find != map1.end()){printf("find key=%d,value=%s\n",iter_find->first,iter_find->second.c_str());}//迭代器安全删除std::map<int,std::string>::iterator ite_es = map1.begin();while(ite_es != map1.end()){if(ite_es->first == 3){ite_es = map1.erase(ite_es);}else++ite_es;}//迭代器遍历auto iter_bl = map1.begin();while(iter_bl != map1.end()){printf("key=%d,value=%s\n",iter_bl->first,iter_bl->second.c_str());++iter_bl;}

打印

ret.first=hmm
erase ret2=1
find key=3,value=zsan
key=2,value=hmm
key=4,value=zsi
key=5,value=chw

multimap

multimap类似与map,区别在于multimap支持插入重复的元素,insert和emplace函数没有返回值,有重复元素时count函数返回值大于1。multimap不能使用[ ]下标插入。

关联容器:哈希表

unordered_set和unordered_multiset

1、这两个容器的操作集类似于set和multiset,区别在于unordered_set和unordered_multiset的底层数据结构是哈希表。
2、哈希表是通过把key进行哈希运算,分配到哈希桶,哈希桶内使用链表法解决哈希冲突。通过key就可以快速找到哈希桶的位置,因此查找效率高。

时间复杂度
1、在没有哈希冲突的情况下,查找是O(1)。

unordered_map和unordered_multimap

1、这两个容器的操作集类似于map和multimap,区别在于unordered_map和unordered_multimap的底层数据结构是哈希表。
2、哈希表是通过把key进行哈希运算,分配到哈希桶,哈希桶内使用链表法解决哈希冲突。通过key就可以快速找到哈希桶的位置,因此查找效率高。

时间复杂度
1、在没有哈希冲突的情况下,查找是O(1)。

unordered_map用法参考这里:https://blog.csdn.net/weixin_40355471/article/details/131803322?spm=1001.2014.3001.5502。

附1:红黑树数据结构

红黑树并不是严格的平衡二叉树,它要求从根到叶子的最长路径不多于最短路径的两倍长,为了满足这个特性,红黑树设置了五大规则:

1、节点是红色或者黑色
2、根节点是黑色
3、每个叶子的节点都是黑色的空节点
4、每个红色节点的两个子节点都是黑色的
5、从任意节点到其叶子节点的每条路径都包含相同个数的黑色节点

红黑树的高度近似logn,是近似平衡的二叉树,插入、删除、查找的时间复杂度都是O(logn),性能非常稳定,在实际工作中,凡是动态插入、删除、查找数据的场景都可以用它。

在这里插入图片描述

附2:哈希表数据结构

哈希表也叫散列表(Hash table),是根据关键码值(Key value)而直接进行访问的数据结构。它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

下图是一个典型应用,key经过哈希函数计算得到哈希值,哈希值对一个常数n取模得到下标,通过下标可以直接访问哈希桶,哈希桶内存放<key,value>,如果有哈希冲突,在哈希桶内使用链表存储。
在这里插入图片描述

附3:reserve和resize

这两个函数常用于STL容器容量操作。
1、reserve,只分配空间,不创建对象,不可访问,用于大量成员创建,一次性分配空间,push_back时就不用再分配,提高执行效率。
2、resize,分配空间的同时还创建对象,并给对象赋初始值,可访问。

    std::vector<int> v1;v1.resize(5);//分配空间并初始化对象为0,此时元素个数是5v1.push_back(10);for(int index=0;index<v1.size();index++)printf("v1[%d]=%d  ",index,v1[index]);printf("\n");std::vector<int> v2;v2.reserve(5);//只分配空间,不创建对象,此时元素个数是0v2.push_back(20);for(int index=0;index<v2.size();index++)printf("v2[%d]=%d  ",index,v2[index]);printf("\n");

打印

v1[0]=0  v1[1]=0  v1[2]=0  v1[3]=0  v1[4]=0  v1[5]=10  
v2[0]=20

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59289.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据库集群的简单了解

Update 关于操作的日志 1.0 redo log 读一次写一次 一共2次, 不安全 注意redo log是顺写 而file是随机 所以Mysql做出类似HDFS的操作 行为日志和数据分离&#xff0c;但是不同的是&#xff0c;Mysql在内存中操作修改&#xff0c;如果不出事故&#xff0c;由内存中的行为来直接…

ES 7.6 - JAVA应用基础操作篇

ES 7.6 - JAVA应用基础操作篇 环境准备依赖配置 实体类准备使用说明索引/映射操作创建索引和映射索引和映射相关查询删除索引 文档操作插入数据更新数据删除数据批量操作 文档查询根据ID查询根据字段精准查询根据字段分词查询控制返回字段范围查询组合查询排序分页高亮搜索聚合…

装备一台ubuntu

配置远程连接&#xff1a; ubuntu的root用户无法远程登入问题&#xff1a; openssh安装命令&#xff1a; sudo apt-get install openssh-server 安装完成通过以下命令查看SSH是否启动 ps -e | grep ssh 如果只有ssh-agent表示还没启动&#xff0c;需要&#xff1a; /etc/i…

面试了38位Java候选人之后,我总结出了他们关于面试中的16条通病

都说现在Java面试卷&#xff0c;前段时间项目招人的时候&#xff0c;我刚好就作为面试官面试了一些人 在整个面试的过程中&#xff0c;我就发现了一些关于面试的通病 所以呢&#xff0c;趁着这次金&#xff08;铜&#xff09;九银&#xff08;铁&#xff09;十的机会&#xf…

matlab-对数据集加噪声并实现tsne可视化

matlab-对数据集加噪声并实现tsne可视化 最近才知道&#xff0c;原来可以不用模型&#xff0c;也能实现对数据集数据的可视化。 **一、**以COIL-100数据集为例子。 问题&#xff1a; 前提&#xff1a;首先对COIL-100数据集根据角度0-175和180-255&#xff0c;分别划分成C1,C…

动态场景建图 Removert(offline) 和 DynamicFilter(online)前端部分对比

1.Removert 简单来说2020年的REMOVERT是针对动态环境下的建图进行优化的一篇很好的作品。 针对的主要问题&#xff1a;若是采用点云特征进行匹配的话&#xff0c;动态障碍物在预处理阶段也会被剔除。那么&#xff0c;另一个方面&#xff0c;动态障碍物对点云地图的构建的影响在…

Moonbeam生态跨链互操作项目汇总

立秋已过&#xff0c;今年的夏天已经接近尾声&#xff0c;即将迎来凉爽的秋天。Moonbeam生态一同以往持续成长&#xff0c;在8月也举办了不少活动、完成集成合作以及协议更新。让我们一同快速了解Moonbeam生态项目近期发生的大小事件吧&#xff01; Moonwell Moonwell是一个建…

查局域网所有占用IP

查局域网所有占用IP 按&#xff1a;winr 出现下面界面&#xff0c;在文本框中输入 cmd 按确定即可出现cmd命令界面 在cmd命令窗口输入你想要ping的网段&#xff0c;下面192.168.20.%i即为你想要ping的网段&#xff0c;%i代表0-255 for /L %i IN (1,1,254) DO ping -w 1 -n 1…

linux/centos zookeeper 使用记录

配置cfg 下载zookeeper-3.4.14.tar.gz负责到centos服务器解压 /xxx/zookeeper-3.4.14/conf/下创建zoo.cfg文件并配置以下属性&#xff0c;/bsoft/zookeeperdata/目录先预先创建 tickTime2000 initLimit10 syncLimit5 dataDir/bsoft/zookeeperdata/ clientPort2181zk启动/重启/关…

11.物联网lwip,网卡原理

一。LWIP协议栈内存管理 1.LWIP内存管理方案 &#xff08;1&#xff09;堆heap 1.灰色为已使用内存 2.黑色为未使用内存 3.紫色为使用后内存 按照某种算法&#xff0c;把数据放在内存块中 &#xff08;2&#xff09;池pool 设置内存池&#xff0c;设置成大小相同的内存块。 2…

Easy Rules规则引擎(2-细节篇)

目录 一、序言二、规则引擎参数配置实例1、skipOnFirstAppliedRules示例(1) FizzRule(2) BuzzRule(3) FizzBuzzRule(4) NonFizzBuzzRule(5) FizzBuzzRulesLauncher 2、skipOnFirstNonTriggeredRule示例3、skipOnFirstFailedRule示例 三、组合规则1、UnitRuleGroup组合规则2、Ac…

基于Java的基数排序(详述)

基于Java的基数排序&#xff08;详述&#xff09; 原理介绍Java实现文献参考 原理介绍 一、什么是基数排序 &#xff08;1&#xff09;通过键值得各个位的值&#xff0c;将要排序的元素分配至一些桶中&#xff0c;达到排序的作用 &#xff08;2&#xff09;基数排序法是属于稳…

Unity Meta Quest MR 开发教程:(二)自定义透视 Passthrough【透视功能进阶】

文章目录 &#x1f4d5;教程说明&#x1f4d5;动态开启和关闭透视⭐方法一&#xff1a;OVRManager.instance.isInsightPassthroughEnabled⭐方法二&#xff1a;OVRPassthroughLayer 脚本中的 hidden 变量 &#x1f4d5;透视风格 Passthrough Styling⭐Inspector 面板控制⭐代码…

固定资产台账怎么管理

固定资产台账是指企业对固定资产进行登记、分类、统计和管理的账簿。固定资产管理系统是一款专业的固定资产管理软件&#xff0c;可以帮助企业实现资产全生命周期管理&#xff0c;包括资产采购、入库、领用、归还、维修、报废等环节。系统具有实时监控、预警提醒、报表分析等功…

App Inventor 2 开发 ChatGPT 对话App

ChatGPT大家应该不会陌生&#xff0c;它的回答内容非常的专业及深入&#xff0c;具有实际的可指导性。我们通过App Inventor 2开发一个简单的对话App&#xff0c;先看效果&#xff1a; App Inventor 2 ChatGPT教育领域对话演示 代码块如下&#xff1a; 用到的核心组件“ChatBot…

6.oracle中listagg函数使用

1. 作用 可以实现行转列&#xff0c;将多列数据聚合为一列&#xff0c;实现数据的压缩 2. 语法 listagg(measure_expr&#xff0c;delimiter) within group ( order by order_by_clause); 解释&#xff1a; measure_expr可以是基于任何列的表达式 delimiter分隔符&#xff0c…

HTML学习笔记02

HTML笔记02 页面结构分析 元素名描述header标题头部区域的内容&#xff08;用于页面或页面中的一块区域&#xff09;footer标记脚部区域的内容&#xff08;用于整个页面或页面的一块区域&#xff09;sectionWeb页面中的一块独立区域article独立的文章内容aside相关内容或应用…

红黑树(AVL树的优化)上

红黑树略胜AVL树 AVL树是一颗高度平衡搜索二叉树&#xff1a; 要求左右高度差不超过1&#xff08;严格平衡&#xff09; 有的大佬认为AVL树太过严格&#xff0c;对平衡的要求越严格&#xff0c;会带来更多的旋转&#xff08;旋转也还是会有一定的消耗&#xff01;&#xff01;…

WordPress使用子主题插件 Child Theme Wizard,即使主题升级也能够保留以前主题样式

修改WordPress网站样式&#xff0c;主题升级会导致自己定义设置的网站样式丢失&#xff0c;还需要重新设置&#xff0c;很繁琐工作量大&#xff0c;发现在WordPress 中有Child Theme Wizard子主题插件&#xff0c;使用Child Theme Wizard子主题插件&#xff0c;即使主题升级&am…

2023年下半年西安/广州/深圳软考(中/高级)开班啦!!!

软考是全国计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试&#xff08;简称软考&#xff09;项目&#xff0c;是由国家人力资源和社会保障部、工业和信息化部共同组织的国家级考试&#xff0c;既属于国家职业资格考试&#xff0c;又是职称资格考试。 系统集成项…