C# Onnx yolov8 竹签计数、一次性筷子计数

目录

效果

模型信息

项目

代码

数据集

下载


C# Onnx yolov8 竹签计数、一次性筷子计数

效果

模型信息

Model Properties
-------------------------
date:2024-01-03T08:55:22.768617
author:Ultralytics
task:detect
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'label'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 5, 8400]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;
        Result result;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            pictureBox2.Image = null;
            Application.DoEvents();

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array = new float[8400 * 84];
            float[] factors = new float[2];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            resize_image.Dispose();
            image_rgb.Dispose();

            result_pro = new DetectionResult(classer_path, factors);
            result = result_pro.process_result(result_array);
            //result_image = result_pro.draw_result(result, image.Clone());
            result_image = result_pro.draw_result2(result, image.Clone());

            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms\r\n";
                textBox1.Text += "Count:" + result.length;
            }
            else
            {
                textBox1.Text = "无信息";
            }

            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;

            model_path = "model/best.onnx";
            classer_path = "model/lable.txt";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/0.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Mat result_image;Result result;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "";pictureBox2.Image = null;Application.DoEvents();//图片缩放image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 84];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);//result_image = result_pro.draw_result(result, image.Clone());result_image = result_pro.draw_result2(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms\r\n";textBox1.Text += "Count:" + result.length;}else{textBox1.Text = "无信息";}button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = "model/best.onnx";classer_path = "model/lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/0.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}

数据集

 

下载

 数据集(带标注)下载

 源码下载


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/592708.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

并发编程下的集合:数组寻址、LinkedList、HashMap、ConcurrentHashMap

数组如何寻址 a[n]起始地址(n*字节数) 译&#xff1a;a[2]100(2*4) 2为下标、4为int类型字段占四个字节 LinkedList LinkedList为双向链表结构&#xff0c;链表结构又分为单向、双向、以及循环。 // 双向链表 private static class Node<E> {E item;Node<E> nex…

vscode中增加参数的一个方法

1 在settings.json 文件中增加参数 2. 在参数中配置 这里也是ok的

【Mybatis】深度解析MyBatis中#和$的差异

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a; Mybatis ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 #&#xff08;预编译&#xff09;&#xff1a; $&#xff08;直接拼接&#xff09;&#xff1a; 结语 我的其他博客 前言…

【unity插件】推荐一款开源的Unity网格破碎插件,实现在Unity中展示可破坏的墙壁的——unity-fracture

最终效果 地址 https://github.com/ElasticSea/unity-fracture 介绍 FractureThis.cs 脚本获取其游戏对象中的所有网格并合并它们。这个全局网格被发送到这里 nvblast &#xff0c;以分解成块。块的内部部分为要应用的材料生成了新的 UV。原始游戏对象被隐藏&#xff0c;每个…

提升三维模型数据的几何坐标纠正速度效率具体技术方法

提升三维模型数据的几何坐标纠正速度效率具体技术方法 根据搜索结果&#xff0c;以下是提升倾斜摄影三维模型数据的几何坐标纠正和三维重建速度的具体技术方法&#xff1a; 1、增加控制点&#xff1a;通过增加控制点数量可以提高几何坐标精度。控制点是已知地面坐标的点&#…

微信公众号内网穿透本地调试微信授权

微信公众号内网穿透本地调试一直以来都比较麻烦 怕自己忘记&#xff0c; 记录一下 准备 natapp获取一个域名隧道下载nginx配置微信公众号web网页授权域名 1.natapp获取一个域名隧道 在natapp官网&#xff08;https://natapp.cn/&#xff09;进行注册登录后&#xff0c;进入…

ES6 class详解

✨ 专栏介绍 在现代Web开发中&#xff0c;JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性&#xff0c;还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言&#xff0c;JavaScript具有广泛的应用场景&#x…

关于“Python”的核心知识点整理大全58

目录 19.2.3 注销 1. 注销URL urls.py 2. 视图函数logout_view() views.py 3. 链接到注销视图 base.html 19.2.4 注册页面 1. 注册页面的URL模式 urls.py 2. 视图函数register() views.py 3. 注册模板 register.html 4. 链接到注册页面 base.html 注意 19.3 …

1.2作业

温湿度数据通过中断处理显示到数码管中 main.c #include "spi.h"#include"si7006.h"int main(){int i0,j0,m0,n0;int num[10] {0xFC,0x60,0xDA,0xF2,0x66,0xB6,0x3E,0xE0,0xFE,0xF6};SPI_init();unsigned short hum;short tem;//进行si7006的初始化si700…

计算机网络 VLAN

路由器将多个局域网连接起来&#xff0c;而交换机将一个局域网里的设备连接起来。 路由器的端口分配局域网的网段&#xff08;子网网段&#xff09;&#xff0c;局域网的内部设备的ip都在这个网段里&#xff0c;再由交换机将数据派发到目的设备&#xff0c;交换机是按照MAC地址…

CMake入门教程【核心篇】编译类型Debug、Release、MinSizeRel、RelWithDebInfo

文章目录 1.说明1.1 Debug 配置1.2 Release 配置1.3 MinSizeRel 配置1.4 RelWithDebInfo 配置 2.提供的编译类型3.示例结论 1.说明 CMake作为一款强大的构建系统&#xff0c;提供了多种编译配置选项。这些配置影响编译过程中的优化级别和调试信息的包含情况。以下是CMake提供的…

技术人员的升级之路:六西格玛黑带培训的力量

在我从一名刚接触质量管理的新人成长为六西格玛黑带的过程中&#xff0c;有一个观念一直伴随着我&#xff0c;那就是改善和卓越不是一个项目&#xff0c;而是一场永无止境的旅程&#xff01; 退一步说&#xff0c;六西格玛管理带来的改变对一个组织有多么深刻呢&#xff1f;它…

10 个值得收藏的顶级手机数据恢复软件【2024年最新】

手机数据恢复&#xff0c;不要担心&#xff0c;今天就给大家分享10款数据恢复软件&#xff01; 现代人的手机中存储了许多重要数据&#xff0c;如照片、视频、消息、联系人等文件&#xff0c;如果手机损坏或数据丢失&#xff0c;这是一件非常烦恼的事情。此时&#xff0c;一款好…

教育CRM系统选型必看,CRM的这四大功能对教育企业来说必不可少

教育行业是出了名的“卷”&#xff0c;对教育企业来说&#xff0c;学生和家长也属于客户&#xff0c;培育与学生、家长的关系是成功的关键。然而&#xff0c;教育机构对CRM管理系统的需求复杂多变&#xff0c;很难找到满意的解决方案。与传统的CRM系统不同&#xff0c;教育机构…

信号可达1公里以上,Wi-Fi HaLow如何做到比传统Wi-Fi强?

随着物联网&#xff08;IoT&#xff09;技术的蓬勃发展&#xff0c;对于能够支持大量设备、长距离传输且功耗低的无线通信技术的需求日益增长。Wi-Fi HaLow&#xff08;基于IEEE 802.11ah标准&#xff09;是专为物联网需求量身定制的突破性无线解决方案。本文将深入探讨Wi-Fi H…

Zookeeper之Java客户端实战

ZooKeeper应用的开发主要通过Java客户端API去连接和操作ZooKeeper集群。可供选择的Java客户端API有&#xff1a; ZooKeeper官方的Java客户端API。第三方的Java客户端API&#xff0c;比如Curator。 接下来我们将逐一学习一下这两个java客户端是如何操作zookeeper的。 1. ZooKe…

Linux系统文件IO

Linux系统文件IO 每个系统都有自己的专属函数&#xff0c;我们习惯称其为系统函数。系统函数并不是内核函数&#xff0c;因为内核函数是不允许用户使用的&#xff0c;系统函数就充当了二者之间的桥梁&#xff0c;这样用户就可以间接的完成某些内核操作了。 在前面介绍了文件描…

【5G PHY】5G 物理层加速卡介绍

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…

vue3项目创建

安装node.js vue --version &#xff08;4.5.0以上&#xff09; npm install -g vue/cli vue create 项目名称 npm run dev 启动 npm run build 打包 ———————— vite 创建工程 npm create vuelatest npm i npm run dev 启动 npm run build 打包 项目结构…

CloudQuery 的过去、现在和未来

CloudQuery (后续简称「CQ」)这个产品从设计/研发到现在&#xff0c;一晃已经 5 年多时间了&#xff0c;在不断的完善中&#xff0c;也积累了不少的社区/企业用户&#xff0c;我意识到&#xff0c;CQ 已经从一个 Idea 变成了公众软件&#xff0c;开始有它的使命、责任和价值主张…