HTTPS协议原理

目录

前言

1.理解加密和解密

2.为什么要加密

3.常见的加密方式

3.1对称加密

3.2非对称加密

4.数据摘要和数据指纹

5. 数字签名

6.HTTPS的加密策略

6.1只使用对称加密

6.2使用非对称加密

6.2.1服务端使用非对称加密

6.2.2双方都使用非对称加密

6.3对称加密+非对称加密

7.中间人攻击

8.证书

9.最终方案

总结


前言

        上一篇文章我们介绍了HTTP协议,是用来客户端向服务端请求资源的,通过编码的方式验证了HTTP协议请求和响应的格式,但是存在的一个问题就是HTTP协议在网络中数据传输是以明文的形式进行传输的,今天我们要介绍的HTTPS协议是基于HTTP协议,解决数据以明文的形式传输存在不安全的问题,解决的方式,是通过加密,在网络中传输加密后的数据,下面我们就一起来看看是如何实现加密保证安全性的。

1.理解加密和解密

加密就是把明⽂(要传输的信息)进⾏⼀系列变换,⽣成密⽂。
解密就是把密⽂再进⾏⼀系列变换,还原成明⽂。

2.为什么要加密

例:下载⼀个天天动听
未被劫持的效果,点击下载按钮,就会弹出天天动听的下载链接.

已被劫持的效果,点击下载按钮,就会弹出QQ浏览器的下载链接 

由于我们通过网络传输的任何的数据包都会经过运营商的网络设备(路由器,交换机等),那么运营商的网络设备就可以解析出你传输的数据内容,并进⾏篡改.点击"下载按钮",其实就是在给服务器发送了⼀个HTTP请求,获取到的HTTP响应其实就包含了APP的下载链接.运营商劫持之后,就发现这个请求是要下载天天动听,那么就⾃动的把交给用户的响应给篡改成"QQ浏览器"的下载地址了。

如图所示:

所以:因为http的内容是明⽂传输的,明⽂数据会经过路由器、wifi热点、通信服务运营商、代理服务器等多个物理节点,如果信息在传输过程中被劫持,传输的内容就完全暴露了。劫持者还可以篡改传输的信息且不被双⽅察觉,这就是 中间⼈攻击 ,所以我们才需要对信息进行加密。

3.常见的加密方式

3.1对称加密

• 采用单钥密码系统的加密法,同⼀个密钥可以同时⽤作信息的加密和解密,这种加密⽅法称为对称加密,也称为单密钥加密,特征:加密和解密所用的密钥是相同的
• 常见对称加密算法:DES、3DES、AES、TDEA、Blowfish、RC2等
• 特点:算法公开、计算量小、加密速度快、加密效率高
对称加密其实就是通过同⼀个"密钥",把明⽂加密成密文,并且也能把密文解密成明文.

⼀个简单的对称加密,按位异或
假设明⽂a=1234,密钥key=8888
则加密a^key得到的密⽂b为9834
然后针对密⽂9834再次进⾏运算b^key,得到的就是原来的明⽂1234

3.2非对称加密

• 需要两个密钥来进⾏加密和解密,这两个密钥是公开密钥(publickey,简称公钥)和私有密钥(privatekey,简称私钥)
• 常见非对称加密算法:RSA,DSA,ECDSA
• 特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,⽽使得加密解密速度没有对称加密解密的速度快。
非对称加密要⽤到两个密钥,⼀个叫做"公钥",⼀个叫做"私钥"
公钥和私钥是配对的.最⼤的缺点就是运算速度非常慢,比对称加密要慢很多
• 通过公钥对明⽂加密,变成密文
• 通过私钥对密⽂解密,变成明文

4.数据摘要和数据指纹

数字指纹(数据摘要),其基本原理是利用单向散列函数(Hash函数)对信息进⾏运算,⽣成⼀串固定⻓度的数字摘要。数字指纹并不是⼀种加密机制,但可以用来判断数据有没有被窜改。
• 摘要常见算法:有MD5、SHA1、SHA256、SHA512等

摘要特征:和加密算法的区别是,摘要严格意义不是加密,因为没有解密,只不过从摘要很难反推原信息,通常用来进行数据对比

5. 数字签名

摘要经过加密,就得到数字签名

6.HTTPS的加密策略

说明:网络通信中,谈到安全,我们必须要解决两个问题,一个是数据被监听的问题,一个数据被篡改的问题,在这里HTTPS实现安全也是围绕这两个问题逐步解决的。

6.1只使用对称加密

客户端使用密钥将数据加密之后发送给服务端,在网络中传输的过程中将密钥和密文一起发给服务端,服务端收到密钥和密文之后对密文进行解密,存在的问题,中间人可以获取到密文和密钥,一旦获取到密文和密钥之后,中间人也可以解密获得数据,此时只是单纯的使用对称加密是无法解决数据不安全的问题的。

6.2使用非对称加密

6.2.1服务端使用非对称加密

如图所示:

6.2.2双方都使用非对称加密

a.服务端拥有公钥S与对应的私钥S',客⼾端拥有公钥C与对应的私钥C'
b.客户和服务端交换公钥
c.客⼾端给服务端发信息:先⽤S对数据加密,再发送,只能由服务器解密,因为只有服务器有私钥S'
d. 服务端给客⼾端发信息:先⽤C对数据加密,在发送,只能由客⼾端解密,因为只有客⼾端有私钥C'

如图所示:

说明:双方都使用非对称加密的方式好像解决了安全问题,但是这里依旧是存在安全问题的,后面继续介绍为什么会有问题,除了会有安全问题之外,双方都采用非对称会导致效率太低,双方需要先进行交换公钥,然后再加密发送数据。首先解决效率问题可以采用对称加密结合非对称加密的方式进行解决。

6.3对称加密+非对称加密

•服务端具有非对称公钥S和私钥S'
• 客⼾端发起https请求,获取服务端公钥S
• 客⼾端在本地⽣成对称密钥C,通过公钥S加密,发送给服务器.
• 由于中间的⽹络设备没有私钥,即使截获了数据,也⽆法还原出内部的原⽂,也就⽆法获取到对称密钥(真的吗)
• 服务器通过私钥S'解密,还原出客⼾端发送的对称密钥C.并且使⽤这个对称密钥加密给客⼾端返回的响应数据.
• 后续客⼾端和服务器的通信都只⽤对称加密即可.由于该密钥只有客⼾端和服务器两个主机知道,其他主机/设备不知道密钥即使截获数据也没有意义.

如图所示:

注:虽然上面的方案好像已经解决了安全问题,但是其实并不然,下面我们就一起来看看,为什么依旧会存在安全问题,以及该如何解决呢?

7.中间人攻击

Man-in-the-MiddleAttack,简称“MITM攻击”

客户端获取到公钥S之后,对客⼾端形成的对称秘钥X⽤服务端给客⼾端的公钥S进⾏加密,中间⼈即使窃取到了数据,此时中间人确实⽆法解出客⼾端形成的密钥X,因为只有服务器有私钥S'但是中间人的攻击,如果在最开始握⼿协商的时候就进⾏了,那就不⼀定了,假设hacker已经成功成为中间人。

1. 服务器具有非对称加密算法的公钥S,私钥S'
2. 中间⼈具有非对称加密算法的公钥M,私钥M'
3. 客户端向服务器发起请求,服务器明⽂传送公钥S给客⼾端?
4. 中间⼈劫持数据报⽂,提取公钥S并保存好,然后将被劫持报⽂中的公钥S替换成为⾃⼰的公钥M,并将伪造报⽂发给客户端
5. 客户端收到报⽂,提取公钥M(⾃⼰当然不知道公钥被更换过了),自己形成对称秘钥X,⽤公钥M加密X,形成报⽂发送给服务器
6. 中间⼈劫持后,直接⽤自己的私钥M'进⾏解密,得到通信秘钥X,再⽤曾经保存的服务端公钥S加密后,将报⽂推送给服务器
7. 服务器拿到报文,用自己的私钥S'解密,得到通信秘钥X
8. 双⽅开始采⽤X进行对称加密,进⾏通信。但是⼀切都在中间⼈的掌握中,劫持数据,进行窃听甚至修改,都是可以的

如图所示:


所以问题的本质出在哪里了呢?

客户端无法确定收到的含有公钥的数据报文,就是目标标服务器发送过来的!那该如何解决呢?答案是使用证书进行解决,下面我们就一起看看什么是证书,以及证书是如何解决的。

8.证书

服务端在使⽤HTTPS前,需要向CA机构申领⼀份数字证书,数字证书⾥含有证书申请者信息、公钥信息等。服务器把证书传输给浏览器,浏览器从证书⾥获取公钥就⾏了,证书就如⾝份证,证明服务端公钥的权威性

如图所示:

证书申请成功后会使用hash形成摘要,然后使用CA认证的私钥对摘要进行加密形成数据签名,然后将签名和证书结合起来,如图所示:

当客户端收到服务端的证书之后,会根据证书中的内容进行hash的方法形成摘要,然后使用证书中的公钥形成数据签名,然后CA会在浏览器中内置自己的公钥,使用自己内置的公钥形成数据签名,两者进行对比,如果相等,则证明服务端发给客户端的公钥没有没修改过,如果不相等就证明是被修改过,通过这样的方式就可以确认是否是目标服务器发过来的。

9.最终方案

通过上面的介绍,HTTPS实现安全高效的加密和解密是通过证书+非对称加密+对称加密的方式进行解决的,如图所示:

总结

        本篇文章为大家介绍了HTTPS实现数据传输时如何保证安全性采取的策略,希望能够对大家有所帮助,感谢大家的阅读,我们下次再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59246.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OLED透明屏显示技术:未来显示科技的领航者

OLED透明屏显示技术是一种创新性的显示技术,它的特殊性质使其成为未来显示科技的领航者。 OLED透明屏具有高对比度、快速响应时间、广视角和低功耗等优势,同时,其透明度、柔性和薄型设计使其成为创新设计的理想选择。 本文将深入探讨OLED透…

【爬虫】5.6 Selenium等待HTML元素

任务目标 在浏览器加载网页的过程中,网页的有些元素时常会有延迟的现象,在HTML元素还没有准备好的情况下去操作这个HTML元素必然会出现错误,这个时候Selenium需要等待HTML元素。例如:上节实例中出现的select的下拉框元素&#xff…

Python实操GetOpenFilename打开文件选择框获取工作表信息

import xlwings as xw xlapp xw.App(visibleTrue, add_bookFalse) a xlapp.api.GetOpenFilename(Excel Files (*.xl*),*.xl*, 0, 0, 0, True) print(a[0]) slist [] for i in a:wk xw.Book(i)for s in wk.sheets:s_dict {}s_dict[工作簿名字] wk.names_dict[工作表名字] …

MyBatis学习简要

目录 什么是MyBatis? MyBatis实现的设想 MyBatis基于配置文件的开发步骤 mybatis的配置文件 Mapper代理开发 配置文件完成增删改查的三步 注解开发 一、条件查询 参数接收时,参数的设置: 动态条件查询: 二、添加功能 步骤&#xf…

crawlab通过docker单节点部署简单爬虫

crawlab 单节点docker安装 此处介绍的是单节点的方式,多节点的情况可以把爬虫上传到一个节点中,之后会同步到其它节点上 version: 3.3 services:master:image: crawlabteam/crawlabcontainer_name: crawlab_masterrestart: alwaysenvironment:CRAWLAB…

安卓系列机型永久去除data分区加密 详细步骤解析

安卓机型玩机搞机刷写第三方twrp存储出现乱码 存储不显示等情况都是没有解密data分区的原因。用户需要在twrp里格式化data分区重启后存储显示正常。那么这个操作后你的数据分区就会呗彻底清除。 今天主要解析下如何操作可以永久解密data分区。其实data分区加密原则上也是厂商为…

node升级带来的问题及解决方案(digital envelope routines::unsupported)

由于项目需要将 node版本从16升级到了18,但是原有的老项目还是使用的16的环境,导致在运行老版本的时候出现错误 错误信息如下 Error: error:0308010C:digital envelope routines::unsupportedat new Hash (node:internal/crypto/hash:71:19)at Object.…

SSD的基础知识介绍

固态硬盘,英文名Solid State Disk或Solid State Drive,是一种以存储器作为永久性存储器的电脑存储设备。虽然SSD已不是使用“碟盘”来记存数据,也没有用于“驱动”的马达,但是人们依照命名习惯,仍然称为固态硬盘或固态…

源码角度看待线程池的执行流程

文章目录 前言一、线程池的相关接口和实现类1.Executor接口2.ExecutorService接口3.AbstractExecutorService接口4.ThreadPoolExecutor 实现类 二、ThreadPoolExecutor源码解析1.Worker内部类2.execute()方法3.addWorker()方法 总结 前言 线程池内部维护了若干个线程&#xff…

RabbitMq深度学习

什么是RabbitMq? RabbitMQ是一个开源的消息队列中间件,它实现了高级消息队列协议(AMQP)。它被广泛用于分布式系统中的消息传递和异步通信。RabbitMQ提供了一种可靠的、可扩展的机制来传递消息,使不同的应用程序能够相互之间进行…

Llama-2大模型本地部署研究与应用测试

最近在研究自然语言处理过程中,正好接触到大模型,特别是在年初chatgpt引来的一大波AIGC热潮以来,一直都想着如何利用大模型帮助企业的各项业务工作,比如智能检索、方案设计、智能推荐、智能客服、代码设计等等,总得感觉…

C语言网络编程实现广播

1.概念 如果同时发给局域网中的所有主机,称为广播 我们可以使用命令查看我们Linux下当前的广播地址:ifconfig 2.广播地址 以192.168.1.0 (255.255.255.0) 网段为例,最大的主机地址192.168.1.255代表该网段的广播地址(具体以ifcon…

开源的经济影响:商业与社区的平衡

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

ChatGPT 一条命令总结Mysql所有知识点

想学习Mysql的同学,可以使用ChatGPT直接总结mysql所有的内容与知识点大纲 输入 总结Mysql数据库所有内容大纲与大纲细分内容 ChatGPT不光生成内容,并且直接完成了思维导图。 AIGC ChatGPT ,BI商业智能, 可视化Tableau, PowerBI, FineReport, 数据库Mysql Oracle, Offi…

K 次取反后最大化的数组和【贪心算法】

1005 . K 次取反后最大化的数组和 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后,返回数组 可能…

word 调整列表缩进

word 调整列表缩进的一种方法,在试了其他方法无效后,按下图所示顺序处理,编号和文字之间的空白就没那么大了。 即右键word上方样式->点击修改格式->定义新编号格式->字体->取消勾选 “……对齐到网格”->确定

AndroidStudio3.5.2修改项目项目包名

公司项目要打造成产品进行演示,需要更换不同的包名进行安装在同一设备上,即所谓的马甲包 更改步骤基本一样 https://blog.csdn.net/qq_35270692/article/details/78336049 需要注意的是,按照上边的步骤修改完后,如果项目中有数据…

机器学习基础之《分类算法(4)—案例:预测facebook签到位置》

一、背景 1、说明 2、数据集 row_id:签到行为的编码 x y:坐标系,人所在的位置 accuracy:定位的准确率 time:时间戳 place_id:预测用户将要签到的位置 3、数据集下载 https://www.kaggle.com/navoshta/gr…

TCP数据报结构分析(面试重点)

在传输层中有UDP和TCP两个重要的协议,下面将针对TCP数据报的结构进行分析 关于UDP数据报的结构分析推荐看UDP数据报结构分析(面试重点) TCP结构图示 TCP报头结构的分析 一.16位源端口号 源端口表示发送数据时,发送方的端口号&am…

Flutter开发- iOS 问题CocoaPods not installed or not in valid state

解决问题方案: 1、先检查本机CocoaPods是否安装,通过gem list 查看是否安装 打开终端,执行gem list,出现图中的数据即为已安装。未安装看第4 步 2、已经安装了CocoaPods,还出现了图中的提示,你可能已经猜…