基于机器视觉的害虫种类及计数检测研究-人工智能项目-附代码

概述

  • 农业与民生和经济发展息息相关,对农业发展科学化的关注既是民生需求,

  • 也是经济稳步发展的迫切需求。病虫害是影响农作物生长的重要因素,对农作物的产量和品质都能造成无法估计的损害。
    -在这里插入图片描述

  • 针对目前广大农业产区农业植保人员稀缺、病虫害识难度大等问题,论文在当前已有的研究基础上进行设计,提出了一套基于机器视觉的远程害虫种类识别
    和数量检测系统,该系统能够在农业产区进行害虫捕杀和图像采集,同时将昆虫 图像上传到虫类鉴别服务器进行昆虫识别。

  • 论文以机器视觉为核心,利用 OpenCV 开源视觉库,研究和实现了昆虫识别的完整流程。论文

研究的内容主要包括:

  • (1) 对昆虫图像进行图像预处理的研究。使用了加权平均法对图像进行灰度化
    处理,再使用高斯滤波对图像进行平滑处理,最后使用大津法对灰度化后的图像 进行二值化处理。
  • (2) 对昆虫图像进行特征提取的研究。使用 OpenCV 对二值化后的图像进行轮
    廓查找,同时实现昆虫计数,然后分别针对昆虫轮廓的矩形度、延长度、似圆度、 球状性、叶状性进行数学定义和特征提取。
  • (3) 对昆虫识别进行了分类器的研究。选取了逻辑斯蒂回归模型、线性 SVM 模 型和 K
    临近模型进行分类器的训练和测试,比较了三种分类器在昆虫识别上的性 能。

论文对基于机器视觉的昆虫种类及数量检测机制进行了研究,并在此基础实
现了昆虫的识别和计数。
在这里插入图片描述

识别

PC 上的昆虫分类识别软件为了能够对本次设计进行原理论证和测试,使用 Python 作为编程语言,开发了一款在 Windows10 上运行的软件。具体程序界面如图 2.7 所示:
在这里插入图片描述
界面中包括:一个用以预览摄像头的窗口,一个用来显示处理之后图像的窗口,一个用来显示识别结果的标签和一个用来点击进行拍照的按钮。
图 2.8 介绍了论文设计的分类识别软件的运行过程。
在这里插入图片描述

昆虫图像的预处理

3.2.1 图像的灰度化,高斯滤波和尺度变换

  • 在机器视觉领域中,灰度图像是指将每个像素通过 8 位非线性尺寸保存,共计 256 种灰度

  • 针对论文进行形态特征提取的方式,进行灰度化即抛弃了不需要的颜色特征等信息,又保留了对于形态特征提取有用的信息,同时易于编程,提高了运算速度。
  • 论文使用灰度处理算法中的加权平均法对昆虫图像进行灰度化处理,由于科学研究中人眼对对蓝色敏感度最低,绿色的敏感度最高,因此,论文按照式(3.1)
    对 RGB 图像中的三种分量进行加权平均,最终能得到合理的灰度图像

gray(݅, ݆) = 0.30 ∗ ܴ(݅, ݆) + 0.59 ∙ ܩ(݅, ݆) + 0.11 ∙ ܤ(݅, ݆) (3.1)

图灰度化后的样本图片,如图 3.3 所示。

3.3.1 检测轮廓

  • 在此次毕业设计中,我使用开源计算机视觉库 OpenCV 作为图像处理的工具,
  • OpenCV 的 Imgproc 模块在物体识别方面提供了函数 findContours()用于对物体 轮廓进行检测,该函数的实现算法是由
    S.Suzuki K. Abe 于 1985 年发表在 CVGIP 上的论文“Toplogical Structrual Analysis
    of Digitized Binary Images by Boder
    Following”[8]中提出的,论文中详细叙述了轮廓决定层次结构的规则以
  • 及轮廓检测的方法,设计中使用 findContours()函数对昆虫图像进行处理,为
    获得昆虫图像中昆虫的轮廓,为之后昆虫轮廓特征值的提取打下基础。

3.3.2 昆虫计数

  • OpenCV 中对于轮廓检测提供了函数findContours(),该函数对昆虫图像预 处理后的二值化图像进行检测,返回一个点集列表,其中每一个点集都代表了图像中封闭的轮廓包含的点的集合。后续的昆虫特征提取都是在检测轮廓得到轮廓 点集列表的基础上完成的。
  • 通过对 findContours()函数返回的点集列表进行计数,点集的个数则大概代表了图像中轮廓的个数,应在在实际场景中,则轮廓的个数代表了一张纸上大米的粒数,也代表了设计场景中一张苍蝇粘板上苍蝇等昆虫的个数。
  • 使用大米计数的样本图片进行原理论证,效果图如图 3.5 所示
    在这里插入图片描述

计数

苍蝇粘板数目检测的实际效果图如图 3.6 所示,
在这里插入图片描述

图 4.2 是获取昆虫图像最小外接矩形和计算矩形度的效果图:

在这里插入图片描述

延长度特征的提取效果如图 4.5 所示:

在这里插入图片描述

昆虫轮廓的球状性特征提取效果如图 4.6 所示

在这里插入图片描述

创新点

设计的创新点在于:

  • (1) 针对农业产区广泛存在的农业害虫检测识别问题,提出了一种基于机器 视觉的害虫种类及数量检测方案。

  • (2) 在参考已有的论文的理论基础之上,提出了针对每一个昆虫形态特征的 提取方案。

  • (3) 在进行分类器训练时,引入了多种分类器算法,并进行训练和测试,能 够在比较分析结果后选择较为理想的分类器算法作为实际使用时的算法。

  • (4) 开发了一套基于 PC 机的识别软件,能够使用摄像头拍着昆虫图片的方 式进行昆虫的识别。

代码

# 全部代码  ------> qq1309399183
# 先读图,然后二值化,通过找轮廓来进行计数import cv2
import numpy as np
from matplotlib import pyplot as pltorigin = cv2.imread('picture/ttt.png')
RiceImg = cv2.imread('picture/ttt.png', 0)blur = cv2.GaussianBlur(RiceImg, (5, 5), 0)# 大津法二值化:此处可以用原理代码来巴拉巴拉一大段
ret, otsu = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# 输出阈值
print ret# 找轮廓
contours = cv2.findContours(otsu, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
num = len(contours[1])
print num
# 画轮廓
cv2.drawContours(origin, contours[1], -1, (0, 0, 255), 1)
cv2.putText(origin, 'Insect Num:  ' + str(num), (1, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (50, 50, 50), 2, cv2.LINE_AA)cv2.namedWindow('RiceO', cv2.WINDOW_AUTOSIZE)
cv2.imshow('RiceO', origin)cv2.imwrite('picture/tttresult.jpg',origin)
k = cv2.waitKey(0)# 'ESC'
if k == 27:cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/591922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

爬虫基础一(持续更新)

爬虫概念: 通过编写程序,模拟浏览器上网,然后让其去互联网上抓取数据的过程 分类: 1,通用爬虫:抓取一整张页面数据 2,聚焦爬虫:抓取页面中的局部内容 3,增量式爬虫&…

【UnityShader入门精要学习笔记】(2)GPU流水线

本系列为作者学习UnityShader入门精要而作的笔记,内容将包括: 书本中句子照抄 个人批注项目源码一堆新手会犯的错误潜在的太监断更,有始无终 总之适用于同样开始学习Shader的同学们进行有取舍的参考。 文章目录 上节复习GPU流水线顶点着色…

Linux操作系统极速入门[常用指令]

linux概述: Linux是一套免费使用和自由传播的操作系统 我们为什么要学,Linux? 主流操作系统: linux系统版本: 内核版: 由linux核心团队开发,维护 免费,开源 负责控制硬件 发行版&…

红队攻防实战之DC2

吾愿效法古圣先贤,使成千上万的巧儿都能在21世纪的中华盛世里,丰衣足食,怡然自得 0x01 信息收集: 1.1 端口探测 使用nmap工具 可以发现开放了80端口,网页服务器但是可以看出做了域名解析,所以需要在本地完成本地域名…

RISC Zero的Babybear域 及其 扩域

1. 引言 前序博客见: 有限域的Fast Multiplication和Modular Reduction算法实现 代码实现见: https://github.com/risc0/risc0/blob/main/risc0/core/src/field/baby_bear.rshttps://github.com/risc0/risc0/tree/main/risc0/circuit/rv32im-sys/cxx…

Prometheus+Grafana(详细讲解)

Prometheus(普罗米修斯)监控系统 1、Prometheus概述 1.1 任务背景 某公司由于业务快速发展,公司要求对现有机器进行业务监控,责成运维部门来实施这个任务。任务要求如下: 部署监控服务器,实现7x24实时监控 针对公司…

4~20mA恒流源 --PLC自控控制

输出部分不接地 1.1&#xff0c; 常规恒流源的方式 用采样电阻 * 电流 控制电压的方式。 负载电阻 * 电流 < 工作电压 1.2&#xff0c;根据运放高阻的特性 Ir Ui/ R, Ir IL, 最大输出电流限制于 RL * Il < Ui. 输出部分接地&#xff0c;工程上更多是用于豪兰德恒流源…

京东高级Java面试真题

今年IT寒冬&#xff0c;大厂都裁员或者准备裁员&#xff0c;作为开猿节流主要目标之一&#xff0c;我们更应该时刻保持竞争力。为了抱团取暖&#xff0c;林老师开通了《知识星球》&#xff0c;并邀请我阿里、快手、腾讯等的朋友加入&#xff0c;分享八股文、项目经验、管理经验…

MIT_线性代数笔记:第 22 讲 对角化和矩阵的幂

目录 对角化矩阵 Diagonalizing a matrix S−1AS Λ矩阵的幂 Powers of A重特征值 Repeated eigenvalues差分方程 Difference equations u k 1 u_{k1} uk1​A u k u_k uk​斐波那契数列 Fibonacci sequence 本讲中将学习如何对角化含有 n 个线性无关特征向量的矩阵&#xff…

HarmonyOS 路由传参

本文 我们来说两个page界面间的数据传递 路由跳转 router.pushUrl 之前我们用了不少了 但是我们只用了它的第一个参数 url 其实他还有个params参数 我们第一个组件可以编写代码如下 import router from ohos.router Entry Component struct Index {build() {Row() {Column() …

低功耗蓝牙模块:促进智慧城市发展的关键技术

在科技快速发展的时代&#xff0c;智慧城市的概念正引领着城市管理的革新。为实现城市更高效、可持续和智能化的管理&#xff0c;低功耗蓝牙模块成为推动智慧城市发展的关键技术之一。本文将探讨低功耗蓝牙模块在智慧城市中的作用&#xff0c;以及其在城市基础设施、公共服务等…

HackTheBox - Medium - Linux - Interface

Interface Interface 是一种中等难度的 Linux 机器&#xff0c;具有“DomPDF”API 端点&#xff0c;该端点通过将“CSS”注入处理后的数据而容易受到远程命令执行的影响。“DomPDF”可以被诱骗在其字体缓存中存储带有“PHP”文件扩展名的恶意字体&#xff0c;然后可以通过从其…

Python序列之字典

系列文章目录 Python序列之列表Python序列之元组Python序列之字典&#xff08;本篇文章&#xff09;Python序列之集合 Python序列之字典 系列文章目录前言一、字典是什么&#xff1f;二、字典的操作1.创建&#xff08;1&#xff09;通过{}、dict()创建&#xff08;2&#xff0…

TDD-LTE TAU流程

目录 1. TAU成功流程 1.1 空闲态TAU 1.2 连接态TAU 2. TAU失败流程 当UE进入一个小区&#xff0c;该小区所属TAI不在UE保存的TAI list内时&#xff0c;UE发起正常TAU流程&#xff0c;分为IDLE和CONNECTED&#xff08;即切换时&#xff09;下。如果TAU accept分配了一个新的…

AI绘图之风景画

这一段时间AI画图比较火&#xff0c;笔者也尝试了一些工具&#xff0c;在使用的过程中发现midjourney比较适合小白&#xff0c;而且画的画比较符合要求。质量也高。当然AI时代的来临大家也不要太慌&#xff0c;毕竟人才是最重要的&#xff0c;AI还是要靠人输入内容才可以生成内…

线程死锁检测组件逻辑与源码

死锁介绍 任务的执行体之间互相持有对方所需的资源而不释放&#xff0c;形成了相互制约而都无法继续执行任务的情况&#xff0c;被称为“死锁”。 死锁案例 线程A持有锁a不释放&#xff0c;需要去获取锁b才能继续执行任务&#xff0c; 线程B持有锁b不释放&#xff0c;需要去…

k8s陈述式资源管理(命令行)

1、资源管理 &#xff08;1&#xff09;陈述式资源管理&#xff08;常用——查、增&#xff09; 使用kubectl工具进行命令行管理 ①特点&#xff1a;对资源的增删查比较方便&#xff0c;对改不友好 ②优点&#xff1a;90%以上的场景都可以满足 ③缺点&#xff1a;命令冗长…

canvas绘制圆点示例

查看专栏目录 canvas示例教程100专栏&#xff0c;提供canvas的基础知识&#xff0c;高级动画&#xff0c;相关应用扩展等信息。canvas作为html的一部分&#xff0c;是图像图标地图可视化的一个重要的基础&#xff0c;学好了canvas&#xff0c;在其他的一些应用上将会起到非常重…

如何移除视频中的背景音乐或人物声音

移除视频声音是将视频指定的声音移除&#xff0c;可以选择移除人物声音还是视频的背景音乐&#xff0c;方便实现二次创作。 小编给大家推荐一些方法帮助大家更轻松地移除视频中的背景音乐或人物声音&#xff0c;有兴趣的朋友请自行百度查找&#xff0c;或小程序查找 1、方法&a…

从入门到精通,30天带你学会C++【第十四天:洛谷选题讲解】

彩蛋 这么长的目录应该没人看吧。 Bi------------------------------------------------------------------------------- 目录 Everyday English 前言 函数 sqrt ( ) for循环 题目网址 分析题意 思路点拨 优化程序 AC代码 AC截图 数学 if判断 题目网址 思路…