C++:继承(这一篇就够了)

C++:继承(这一篇就够了)

  • 一、继承的概念及定义
    • 1.1 继承的概念
    • 1.2 继承定义
      • 1.2.1定义格式
      • 1.2.2 继承关系和访问限定符
      • 1.2.3 继承基类成员访问方式的变化
  • 二、基类和派生类对象赋值转换
  • 三、继承中的作用域
  • 四、派生类的默认成员函数
  • 五、继承与静态成员
  • 六、复杂的菱形继承及菱形虚拟继承
    • 6.1 菱形继承的问题
    • 6.2 二义性结局办法(1)
    • 6.3 二义性结局办法(2)
    • 6.4 虚拟继承解决数据冗余和二义性的原理
  • 七、继承和组合

一、继承的概念及定义

1.1 继承的概念

继承(inheritance)机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用
【实例】:(简单看一下如何使用,具体后面会详细介绍)

class Person
{
public:void Print(){cout << "name:" << _name << endl;cout << "age:" << _age << endl;}
protected:string _name = "peter"; // 姓名int _age = 18;  // 年龄
};
// 继承后父类的Person的成员(成员函数+成员变量)都会变成子类的一部分。
//这里体现出了Student和Teacher复用了Person的成员。
class Student : public Person
{
protected:int _stuid; // 学号
};int main()
{Student s;s.Print();return 0;
}

1.2 继承定义

1.2.1定义格式

下面我们看到Person是父类,也称作基类。Student是子类,也称作派生类。
在这里插入图片描述

1.2.2 继承关系和访问限定符

在这里插入图片描述

1.2.3 继承基类成员访问方式的变化

继承基类成员访问方式的所有变化:基类的私有成员在子类都是不可见;基类的其他成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式),public > protected > private。
表格如下:

类成员/继承方式public继承protected继承private继承
基类的public成员派生类的public成员派生类的protected成员派生类的private成员
基类的protected成员派生类的protected成员派生类的protected成员派生类的private成员
基类的private成员在派生类中不可见在派生类中不可见在派生类中不可见

小tips:

  1. 基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它。
  2. 基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected。可以看出保护成员限定符是因继承才出现的。
  3. 使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public,不过最好显示的写出继承方式。
  4. 在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡使protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。
    .

二、基类和派生类对象赋值转换

我们知道类型相似的对象之间支持相互转换,并且中间会生成一个临时变量。比如:int和double都表示数,只是精度的问题罢了,所以支持赋值转换。
【实例】:

int main()
{
//为什么i加引用,不加const会报错.
//原因在于赋值转化时,首先会将变量d转化为int类型并将结果存在一个临时变量里
//所以这里引用绑定的对象实际是这个临时变量,所以必须加const,否则会编译报错。double d = 1.2;//int& i = d; //errorconst int& i = d;return 0;
}

那对于基类和派生类对象赋值转换也是这样吗?我们来看看下面这段代码:

class Person
{
protected:string _name; // 姓名string _sex;  // 性别int	_age;	 // 年龄
};class Student : public Person
{
public:int _No; // 学号
};int main()
{Student s;Person p = s;Person& rp = s;return 0;
}

我们运行这段代码发现可以正常通过,也从侧面说明基类和派生类对象之间的赋值转换不会产生临时变量。
其实在public继承,父类和子类是一个is-a关系;子类对象赋值给父类对象/父类指针/父类的引用,我们认为这是天然的,中间不产生临时变量,这个叫做父子类赋值兼容规则(或切割、切片)

在这里插入图片描述
小tips:

  1. 基类对象不能赋值给派生类对象。
  2. 类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类的指针是指向派生类对象时才是安全的。这里基类如果是多态类型,可以使用RTTI(RunTime Type Information)的dynamic_cast 来进行识别后进行安全转换。

三、继承中的作用域

继承中的作用域主要就注意以下这几点就可以了。

  1. 在继承体系中基类和派生类都有独立的作用域。
  2. 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问
  3. 如果是成员函数的隐藏,只需要函数名相同就构成隐藏。
  4. 注意在实际中在继承体系里面最好不要定义同名的成员。

【实例1】:

// Student的_num和Person的_num构成隐藏关系,可以看出这样代码虽然能跑,但是非常容易混淆
class Person
{
protected:int _num = 111; //身份证
};class Student : public Person
{
public:void Print(){cout << " 身份证号:" << Person::_num << endl;cout << " 学号:" << _num << endl;}
protected:int _num = 999; // 学号
};void Test()
{Student s1;s1.Print();
};

【实例2】:

// B中的fun和A中的fun不是构成重载,因为不是在同一作用域
// B中的fun和A中的fun构成隐藏,成员函数满足函数名相同就构成隐藏。
class A
{
public:void fun(){cout << "func()" << endl;}
};class B : public A
{
public:void fun(int i){A::fun();cout << "func(int i)->" << i << endl;}
};void Test()
{B b;b.fun(10);
};

四、派生类的默认成员函数

6个默认成员函数,即我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?

  1. 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
  2. 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
  3. 派生类的operator=必须要调用基类的operator=完成基类的复制。
  4. 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。
  5. 派生类对象初始化先调用基类构造再调派生类构造。
  6. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同。那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加virtual的情况下,子类析构函数和父类析构函数构成隐藏关系。


【实例】:(下面主要演示4个主流的默认构造函数,至于其他2个基本没用)

class Person
{
public:Person(const char* name = "peter"): _name(name){cout << "Person()" << endl;}Person(const Person& p): _name(p._name){cout << "Person(const Person& p)" << endl;}Person& operator=(const Person& p){cout << "Person operator=(const Person& p)" << endl;if (this != &p)_name = p._name;return *this;}~Person(){cout << "~Person()" << endl;}
protected:string _name; // 姓名
};class Student : public Person
{
public://按照声明顺序完成构造,先调用基类的默认构造,在初始化其他成员//由于基类Person中有默认构造,所以也可以不显示调用Student(const char* name, int id):_id(id), Person(name){cout << "Student(const char* name, int id)" << endl;}//派生类拷贝构造,基类的成员变量的拷贝构造必须调用基类的拷贝构造Student(const Student& s):Person(s), _id(s._id){cout << "Student(const Student& s)" << endl;}//派生类赋值重载中的基类成员必须调用基类的赋值重载函数//由于派生类和基类的赋值重载构成隐藏,所以我们必须显示指定类域调用对应的赋值重载Student& operator=(const Student& s){if (&s != this){Person::operator=(s);//显示指定调用_id = s._id;}cout << "Student& operator=(const Student& s)" << endl;return *this;}// 由于多态的原因,析构函数统一会被处理成destructor// 父子类的析构函数构成隐藏// 为了保证析构安全,先子后父// 父类析构函数不需要显示调用,子类析构函数结束时会自动调用父类析构// 保证先子后父~Student(){//Person::~Person();cout << "~Student()" << endl;}protected:int _id;
};int main()
{Student s1("张三", 18);Student s2(s1);Student s3("李四", 19);s1 = s3;return 0;
}

五、继承与静态成员

基类定义了static静态成员,则整个继承体系里面只有一个这样的成员。静态成员和成员函数一样只有一份,子类只是继承了使用权。
【实例】:(统计定义了多少个对象,都是继承关系)
【分析】:我们可以定义一个静态变量,由于是继承关系,所有对象的默认构造是都需要调用子类的默认构造来初始化对象中子类的成员。所以我们可以在最开始的类中显示的写默认构造函数 + 定义静态变量,同时每运行一次说明创建了一个对象,将静态变量++即可。
【代码】:

class Person
{
public:Person() {++_count; }
public:static int _count; // 统计人的个数。
};
int Person::_count = 0;//定义class Student : public Person
{
protected:int _stuNum; // 学号
};int main()
{Student s1;Person p1;cout << " 人数 :" << Person::_count << endl;Student s2;Student s3;cout << " 人数 :" << Person::_count << endl;return 0;
}

在这里插入图片描述

六、复杂的菱形继承及菱形虚拟继承

继承分为单继承和多继承。而菱形继承是多继承的一直特殊情况,虚拟继承则是为了解决其中的一些问题孕育而生。
单继承:一个子类只有一个直接父类时称这个继承关系为单继承。
在这里插入图片描述
多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承。
在这里插入图片描述
菱形继承:菱形继承是多继承的一种特殊情况。

在这里插入图片描述

6.1 菱形继承的问题

我们来看看这个继承类:

class Person
{
public:string _name; // 姓名
};class Student : public Person
{
protected:int _num; //学号
};class Teacher : public Person
{
protected:int _id; // 职工编号
};class Assistant : public Student, public Teacher
{
protected:string _majorCourse; // 主修课程
};

【关系如下】:

在这里插入图片描述从上面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。在Assistant的对象中Person成员会有两份。
同时由于二义性,当我们直接通过a._name = "xxx"去修改数据时,我们没法确定访问的是哪一个。但这有两种解决方式:

6.2 二义性结局办法(1)

要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决。

a.Student::_name = "xxx";
a.Teacher::_name = "yyy";

6.3 二义性结局办法(2)

第二种就是虚拟继承,虚拟继承可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在Student和Teacher的继承Person时使用虚拟继承(在继承方式前加virtual关键字),即可解决问题。需要注意的是,虚拟继承不要在其他地方去使用。
【实例】:

class Person
{
public:string _name; // 姓名
};class Student : virtual public Person
{
protected:int _num; //学号
};class Teacher : virtual public Person
{
protected:int _id; // 职工编号
};class Assistant : public Student, public Teacher
{
protected:string _majorCourse; // 主修课程
};void Test()
{Assistant a;a._name = "peter";
}

6.4 虚拟继承解决数据冗余和二义性的原理

为了研究虚拟继承原理,我们给出了一个简化的菱形继承继承体系,再借助内存窗口观察对象成员的模型。
接下来所有分析都基于以下代码:

class A
{
public:int _a;
};class B : public A
//class B : virtual public A
{
public:int _b;
};class C : public A
//class C : virtual public A
{
public:int _c;
};
class D : public B, public C
{
public:int _d;
};
int main()
{D d;d.B::_a = 1;d.C::_a = 2;d._b = 3;d._c = 4;d._d = 5;return 0;
}

下图是菱形继承的内存对象成员模型:这里可以看到数据冗余

在这里插入图片描述
下图是菱形虚拟继承的内存对象成员模型:这里可以分析出D对象中将A放到的了对象组成的最下面,这个A同时属于B和C,那么B和C如何去找到公共的A呢?这里是通过了B和C的两个指针,指向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过偏移量可以找到下面的A。
在这里插入图片描述
下面是上面的Person关系菱形虚拟继承的原理解释:
在这里插入图片描述
总结:多继承可以认为是C++的缺陷之一,很多后来的OO语言都没有多继承,如Java。

七、继承和组合

  1. public继承是一种is-a的关系。也就是说每个派生类对象都是一个基类对象。组合是一种has-a的关系。假设B组合了A,每个B对象中都有一个A对象。
  2. 优先使用对象组合,而不是类继承
  3. 继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称为白箱复用(white-box reuse)。术语“白箱”是相对可视性而言:在继承方式中,基类的内部细节对子类可见 。继承一定程度破坏了基类的封装,基类的改变,对派生类有很大的影响。派生类和基类间的依赖关系很强,耦合度高。
  4. 对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复用(black-box reuse),因为对象的内部细节是不可见的。对象只以“黑箱”的形式出现。组合类之间没有很强的依赖关系,耦合度低。优先使用对象组合有助于你保持每个类被封装。
  5. 实际尽量多去用组合。组合的耦合度低,代码维护性好。不过继承也有用武之地的,有些关系就适合继承那就用继承,另外要实现多态,也必须要继承。类之间的关系可以用继承,可以用组合,就用组合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/591353.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

可穿戴智能设备应用领域以及使用意义分别有哪些?

可穿戴智能设备有哪些&#xff1f; 可穿戴智能设备是指可以佩戴在身上&#xff0c;具有智能功能和交互能力的电子设备。以下是一些常见的可穿戴智能设备&#xff1a; 智能手表&#xff1a;智能手表结合了传统手表的功能和智能设备的特性&#xff0c;可以显示时间、接收通知、监…

Linux下一切皆文件

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 目录 你是否听过Linux下一切皆文件&#xff1f; 在哪里我们体悟到了Linux下一切皆文件&#xff1f; 文件是什么&#xff1f; 在哪里体悟到的&#xff1f; 常见疑惑 怎么办到的Linux下一切皆文件&#xff1f; 我们抛出…

LED显示屏常用驱动芯片一览表

LED显示屏驱动芯片是专门用于驱动LED显示屏的核心芯片&#xff0c;它能够将输入的电信号转化为驱动能力&#xff0c;以控制LED灯的亮度和颜色。LED显示屏驱动芯片具有高可靠性、低功耗、长寿命等优点&#xff0c;是LED显示屏产业的核心零部件之一。 SM16306SJ LED显示屏驱动芯…

《MySQL系列-InnoDB引擎02》InnoDB存储引擎介绍

文章目录 第二章 InnoDB存储引擎1 InnoDB存储引擎概述2 InnoDB存储引擎的版本3 InnoDB体系架构3.1 后台线程3.2 内存 4 Checkpoint技术5 Master Thread 工作方式5.1 InnoDB 1.0.x版本之前的Master Thread5.2 InnoDB 1.2.x版本之前的Master Thread5.3 InnoDB 1.2.x版本的Master …

python写入csv文件总是多出一行空行(windows)

问题代码 import csv from os import pathfull_path path.abspath(__file__) path_dir path.dirname(full_path)data [[Name, Age, City],[John, 25, New York],[Alice, 30, Los Angeles],[Bob, 35, Chicago] ] # 代码使用都是正常的&#xff0c;但是总是多出一行空格 with…

Unity游戏资源更新(AB包)

目录 前言&#xff1a; 一、什么是AssetBundle 二、AssetBudle的基本使用 1.AssetBundle打包 2.BuildAssetBundle BuildAssetBundleOptions BuildTarget 示例 3.AssetBundle的加载 LoadFromFile LoadFromMemory LoadFromMemoryAsync UnityWebRequestAsssetBundle 前…

nginx+rsyslog+kafka+clickhouse+grafana 实现nginx 网关监控

需求 我想做一个类似腾讯云网关日志最终以仪表方式呈现&#xff0c;比如说qps、p99、p95的请求响应时间等等 流程图 数据流转就像标题 nginx ----> rsyslog ----> kafka —> clickhouse —> grafana 部署 kafka kafka 相关部署这里不做赘述&#xff0c;只要创…

跨境电商代采是什么?怎么做代采网站?

跨境电商独立站就是跨境电商自行搭建的销售网站&#xff0c;服务器、域名都是自主购买的&#xff0c;并由跨境电商独立运营与营销推广。 近些年来&#xff0c;各类第三方电商平台虽然流量大&#xff0c;但是随着进驻电商数量的增加&#xff0c;流量竞争也愈发激烈&#xff0c;…

雷达遮挡检测综述

1 概述 雷达&#xff08;毫米波、激光&#xff09;的遮挡是实际项目中比较常见的现象&#xff0c;优秀的算法应当能够及时、准确地检测出雷达是否被遮挡&#xff0c;以及遮挡的严重程度&#xff0c;然后将故障信息发送给诊断系统&#xff0c;并在仪表盘上显示&#xff0c;如…

win系统微软输入法踩坑之输入法

例如&#xff1a;字母间距变宽 或者打字总是繁体等等 字母变宽是因为快捷键误触切换成了全角字符。。 立马打开输入法设置界面进行相关设置&#xff08;你要解决的输入法问题都可以在这里得到解决&#xff09;&#xff1a;

LED恒流驱动芯片:700V高压线性恒流选型一览表

LED恒流驱动芯片是一种专门用于LED照明产品的电子元件&#xff0c;它能够实现LED的恒流驱动&#xff0c;从而保证LED灯具在工作过程中稳定的亮度和电流输出。其中&#xff0c;700V高压线性恒流是LED恒流驱动芯片的一个重要特性&#xff0c;下面就让我们来详细了解一下。 SM2253…

Apple Unity Plugins 接入GameCenter 崩溃解决方案

目录 问题问题原因解决方案可直接使用的UnityPlugins 问题 调用 GKLocalPlayer.Local.FetchItems() 程序崩溃&#xff0c;报错&#xff1a;Thread 1: EXC_BAD_ACCESS (code257, address0x8000000000000002) 启动崩溃&#xff0c;报错&#xff1a;Library not loaded: rpath/Ap…

新年新计划,羊大师教你如何实现个人目标与成长

新年新计划&#xff0c;羊大师教你如何实现个人目标与成长 新的一年已经到来&#xff0c;这是一个神奇的时刻&#xff0c;一个全新的开始&#xff0c;也是实现自己目标与成长的最佳时机。在这个瞬息万变的世界中&#xff0c;我们总是被忙碌的生活所迷失&#xff0c;然而我们需…

2023年度回顾:怿星科技的转型与创新

岁月不居&#xff0c;时节如流。随着2023年的落幕&#xff0c;怿星科技在这一年中不仅实现了自身的转型&#xff0c;还在技术创新、产品研发、行业合作和人才培养等方面取得了显著的成就。这一年&#xff0c;怿星科技正式完成了从服务型公司向产品型公司的战略转变&#xff0c;…

为什么选择 IBM LSF?

IBM Spectrum Computing 推出了全面的软件定义基础架构解 决方案产品组合&#xff0c;从而优化资源利用率以缩短成果实现时间并 降低成本&#xff0c;以高效地交付 IT 服务。IBM Spectrum Computing 解决方案非常适合技术和 HPC 应用&#xff0c;旨在简化和加速高性能 仿真和分…

Windows本地如何部署Apache服务器搭配内网穿透实现无公网IP远程访问?

文章目录 前言1.Apache服务安装配置1.1 进入官网下载安装包1.2 Apache服务配置 2.安装cpolar内网穿透2.1 注册cpolar账号2.2 下载cpolar客户端 3. 获取远程桌面公网地址3.1 登录cpolar web ui管理界面3.2 创建公网地址 4. 固定公网地址 前言 Apache作为全球使用较高的Web服务器…

深度学习|3.6 激活函数 3.7 为什么需要非线性激活函数

激活函数 主要有sigmoid函数、tanh函数、relu函数和leaky relu函数 tanh函数相比sigmoid函数是具有优势的&#xff0c;因为tanh函数使得输出值的平均值为0&#xff0c;而sigmoid函数使得输出值的平均值为1/2&#xff0c;对下一层来说tanh输出的0更好进行处理。 激活函数tanh…

DIA数皆智能客户体验管理CEM获伊利“健康+AI”生态创新大奖

DIA数皆智能客户体验管理CEM获伊利“健康AI”生态创新大奖 数皆智能再获殊荣&#xff01; 北京&#xff0c;2023年12月26日 — 在全球瞩目的伊利集团“健康AI”生态创新大赛中&#xff0c;上海数皆智能技术有限公司大放异彩&#xff0c;其创新领先的“智能化客户体验管理CEM&a…

第19届楚天春晚在九省通衢大武汉闪亮登场

——中国明星后代女子歌舞团刘亦菲等兼任形象大使 2024年新年伊始&#xff0c;一场以繁荣中国传统文化为主旨的“楚天春晚”全国文旅活动在湖北武汉拉开帷幕&#xff01;以“文化强省&#xff0c;旅游大省”为神州特色的联合国世界品牌之都&#xff0c;在辞旧迎新的早春来临之…

kubeadm来快速搭建一个K8S集群

二进制搭建适合大集群&#xff0c;50台以下的主机 kubeadm更适合中下企业的业务集群 我们采用了二进制包搭建出的k8s集群&#xff0c;本次我们采用更为简单的kubeadm的方式来搭建k8s集群。 二进制的搭建更适合50台主机以上的大集群&#xff0c;kubeadm更适合中小型企业的集群…