助力打造智慧数字课堂,基于YOLOv7【tiny/l/x】开发构建教学课堂场景下学生课堂行为检测识别分析系统

近年来,随着行为检测技术的发展,分析学生在课堂视频中的行为,以获取他们的课堂状态和学习表现信息已经成为可能。这项技术对学校的教师、管理人员、学生和家长都非常重要。使用深度学习方法自动检测学生的课堂行为是分析学生课堂表现和提高教学效果的一种很有前途的方法。在传统的教学模式中,教师很难及时有效地关注每个学生的学习情况,只能通过观察少数学生来了解自己教学方法的有效性。加之课堂时间有效提问式的交互方式难以覆盖到所有人群,传统的应试教育模式通过考试来检查学生知识掌握的程度往往具有滞后性和低效性。除此之外,学生家长只有通过与老师和学生的交流才能了解孩子的学习情况。而这些反馈相对具有主观性,学习本身是一个需要自发性主动性去参与的过程,但是在青春的年纪很多学习之外的诱惑或者是注意力不集中等因素会导致学生在课堂的参与度不高,如何通过教学过程中的及时反馈响应来聚焦课堂注意力提高教学效率成为了最核心的问题,我们不是教育专家,我们只是喜欢探讨如何将技术与现实生活场景相结合,本文的核心思想就是想要探索利用目标检测模型来检测分析学生的行为,分析他们的学习状态和表现,对于出现的异常行为进行响应或者是记录,为教育教学提供更全面、准确的反馈,通过对课堂行为数据的分析进而有效地纠正低效的课堂行为,从而提高学习成绩。

本文主要是选择最新的YOLOv7来开发实现检测模型,我们开发了tiny、l和x三款不同参数量级的模型用于整体对比分析,首先看下实例效果:

简单看下实例数据情况:

在前文中我们已经进行了相关的项目开发实践,感兴趣的话可以自行移步阅读:

《助力打造智慧数字课堂,基于YOLOv5全系列【n/s/m/l/x】不同参数量级模型开发构建教学课堂场景下学生课堂行为检测识别分析系统》

《助力打造智慧数字课堂,基于YOLOv8全系列【n/s/m/l/x】不同参数量级模型开发构建教学课堂场景下学生课堂行为检测识别分析系统》

《助力打造智慧数字课堂,基于YOLOv6开发构建教学课堂场景下学生课堂行为检测识别分析系统》

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。

这里主要是选择了yolov7-tiny、yolov7和yolov7x这三款不同参数量级的模型来进行开发训练,训练数据配置文件如下:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 6# class names
names: ['handRaising', 'reading', 'writing', 'usingPhone', 'bowingHead', 'learningOverTable']

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss曲线】

对比来看:tiny轻量级的模型并被yolov7l和yolov7x拉开了明显的差距,而l和x两款模型则没有呈现明显的差距,保持相近的结果水平,考虑到l具备更小的参数体量,这里我们线上yolov7系列最终选定的是l系列的模型。

接下来以l系列模型为基准,看下详细的结果信息:

【混淆矩阵】

【训练可视化】

【PR曲线】

【Batch实例】

感兴趣的话都可以自行动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/590776.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LMM 006】LLaVA-Plus:可以学习如何使用工具的多模态Agent

论文标题:LLaVA-Plus: Learning to Use Tools for Creating Multimodal Agents 论文作者:Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang, Jianfeng Gao, Chunyuan Li 作…

【大数据面试知识点】Spark的DAGScheduler

Spark数据本地化是在哪个阶段计算首选位置的? 先看一下DAGScheduler的注释,可以看到DAGScheduler除了Stage和Task的划分外,还做了缓存的跟踪和首选运行位置的计算。 DAGScheduler注释: The high-level scheduling layer that i…

大数据 - Hadoop系列《三》- HDFS(分布式文件系统)概述

🐶5.1 hdfs的概念 HDFS分布式文件系统,全称为:Hadoop Distributed File System。 它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集…

(五)分文件编程

文章目录 为什么要引入分文件编程.C文件怎么添加.H文件怎么书写以及如何进行链接.H书写格式:“有头有尾标识符”例如(timer.h) .H链接链接到头文件所在路径的文件夹路径即可 提供一个分文件编程的一种代码最后附上视频演示 为什么要引入分文件编程 C程序…

git的使用基础教程

最近项目在搞自动化测试,需要将各种测试脚本集成到自动化框架里边,这个就需要用到版本管理系统了,下面简单价绍一下git的使用。 首先从官网下载并安装git工具,下面以wins系统为例子说明 https://git-scm.com/downloads wins安装好后&#xff…

灸哥问答:软件架构在软件研发中的作用

软件架构在软件开发中扮演着至关重要的角色。我们在软件研发的过程中,类比于建造一座公寓楼,而软件架构就像是盖楼之前的设计图纸,如果没有设计图纸就直接盖楼,可想而知带来的后果是什么。我对软件架构的作用表现总结如下&#xf…

JS变量和函数提升

JS变量和函数提升 JS变量提升编译阶段执行阶段相同变量或函数 变量提升带来的问题变量容易不被察觉的遭覆盖本应销毁的变量未被销毁 如何解决变量提升带来的问题 JS变量提升 sayHi()console.log(myname)var myname yyfunction sayHi() {console.log(Hi) }// 执行结果: // Hi …

深度学习——PIL和OpenCV

PIL 官方文档 格式互转 opencv cv2.imread() 参数: filepath:读入imge的完整路径 flags:标志位,{cv2.IMREAD_COLOR,cv2.IMREAD_GRAYSCALE,cv2.IMREAD_UNCHANGED} cv2.IMREAD_COLOR:默认参数&…

Attention机制

前置知识&#xff1a;RNN&#xff0c;LSTM/GRU 提出背景 Attention模型是基于Encoder-Decoder框架提出的。Encoder-Decoder框架&#xff0c;也就是编码-解码框架&#xff0c;主要被用来处理序列-序列问题。 Encoder&#xff1a;编码器&#xff0c;将输入的序列<x1,x2,x3……

『番外篇十』SwiftUI 实战:打造一款“五脏俱全”的网络图片显示 App(下)

概览 在上篇文章中,我们初步实现了一款小巧的网络图片显示器。 我们先是创建了 json 数据对应的图片模型,然后将 App 界面“分而治之”划分为独立的三个组件以便“逐个击破”,最后我们将所有这些融合在一起。 不过,目前的实现仍有一些问题。比如我们添加了一层不必要的 …

详解Vue3中的鼠标事件mousemove、mouseover和mouseout

本文主要介绍Vue3中的常见鼠标事件mousemove、mouseover和mouseout。 目录 一、mousemove——鼠标移动事件二、mouseover——鼠标移入事件三、mouseout——鼠标移出事件 下面是Vue 3中常用的鼠标事件mousemove、mouseover和mouseout的详解。 一、mousemove——鼠标移动事件 鼠…

跟着cherno手搓游戏引擎【3】事件系统和预编译头文件

不多说了直接上代码&#xff0c;课程中的架构讲的比较宽泛&#xff0c;而且有些方法写完之后并未测试。所以先把代码写完。理解其原理&#xff0c;未来使用时候会再此完善此博客。 文件架构&#xff1a; Event.h:核心基类 #pragma once #include"../Core.h" #inclu…

JMeter使用

目录 启动JMeter 创建线程组 设置线程参数 设置http请求参数 ​编辑 创建查看结果树(显示成功/失败多少以及返回结果等信息) 创建聚合报告(显示响应时间、吞吐量、异常数等信息) 点击上方的执行按钮即可开始压力测试 结果树显示 聚合报告结果显示 启动JMeter 在JMete…

CSS-4

平面转换 整体认识 div {margin: 100px 0;width: 100px;height: 100px;background-color: pink;/* 过渡效果 */transition: all 1s;}/* 当鼠标悬停到div时&#xff0c;进行平面转换 */div:hover {transform: translate(800px) rotate(360deg) scale(2) skew(180deg);}作用&…

系统学习Python——装饰器:函数装饰器-[对方法进行装饰:使用嵌套函数装饰方法]

分类目录&#xff1a;《系统学习Python》总目录 如果想要函数装饰器在简单函数和类级别的方法上都能工作&#xff0c;最直接的解决办法在于使用前面文章介绍的状态保持方案之一&#xff1a;把自己的函数装饰器编写为嵌套的def&#xff0c;这样你就不会陷入单一的self实例参数既…

【unity学习笔记】捏人+眨眼效果+口型效果

一、vriod捏人 1.在vroidstudio软件中捏人 2.导出模型&#xff08;.vrm) 二、vrid导入unity的插件 1.在Git上搜索、打开univrm。 2.找到release页面找到合适的插件版本。&#xff08;VRM-0.116.0_0f6c&#xff09; 3.将univrm导入到工程中&#xff08;assets&#xff09;。 三…

前端显示json格式化

实现效果 在前端页面上展示格式化的JSON数据可以通过以下步骤完成&#xff1a; 获取JSON数据&#xff1a;首先&#xff0c;你需要获取要展示的JSON数据。你可以从后端API获取数据&#xff0c;或者直接在前端定义一个JSON对象。 格式化JSON&#xff1a;使用JavaScript的JSON对…

微服务雪崩问题及解决方案

雪崩问题 微服务中&#xff0c;服务间调用关系错综复杂&#xff0c;一个微服务往往依赖于多个其它微服务。 微服务之间相互调用&#xff0c;因为调用链中的一个服务故障&#xff0c;引起整个链路都无法访问的情况。 如果服务提供者A发生了故障&#xff0c;当前的应用的部分业务…

C++初阶------------------入门C++

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; ​&#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382; &#x1f389;&#x1f389;&#x1f389…

【LMM 007】Video-LLaVA:通过投影前对齐以学习联合视觉表征的视频多模态大模型

论文标题&#xff1a;Video-LLaVA: Learning United Visual Representation by Alignment Before Projection 论文作者&#xff1a;Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, Li Yuan 作者单位&#xff1a;Peking University, Peng Cheng Laboratory, Sun …