大数据规模存储的几个核心问题

文章目录

  • 三个关键问题
  • RAID(独立磁盘冗余阵列)
  • RAID是如何解决关于存储的三个关键问题?
  • 水平伸缩

大规模数据存储都需要解决几个核心问题,这些问题都是什么呢?

三个关键问题

1.数据存储容量的问题

既然大数据要解决的是数以PB计的数据计算问题,而一般的服务器磁盘容量通常1~2TB,那么如何存储这么大规模的数据呢?

2.数据读写速度的问题

一般磁盘的连续读写速度为几十MB,以这样的速度,几十PB的数据恐怕要读写到天荒地老。

3.数据可靠性的问题

磁盘大约是计算机设备中最易损坏的硬件了,通常情况一块磁盘使用寿命大概是一年,如果磁盘损坏了,数据怎么办?

RAID(独立磁盘冗余阵列)

在大数据技术出现之前,我们就需要面对这些关于存储的问题,对应的解决方案就是RAID技术。今天我们就先从RAID开始,一起看看大规模数据存储方式的演化过程

RAID(独立磁盘冗余阵列)技术是将多块普通磁盘组成一个阵列,共同对外提供服务。主要是为了改善磁盘的存储容量、读写速度,增强磁盘的可用性和容错能力。在RAID之前,要使用大容量、高可用、高速访问的存储系统需要专门的存储设备,这类设备价格要比RAID的几块普通磁盘贵几十倍。RAID刚出来的时候给我们的感觉像是一种黑科技,但其原理却不复杂,下面我慢慢道来。

目前服务器级别的计算机都支持插入多块磁盘(8块或者更多),通过使用RAID技术,实现数据在多块磁盘上的并发读写和数据备份。

常用RAID技术有图中下面这几种,光看图片你可能觉得它们都差不多,下面我给你讲讲它们之间的区别。

在这里插入图片描述
首先,我们先假设服务器有N块磁盘**,RAID 0**是数据在从内存缓冲区写入磁盘时,根据磁盘数量将数据分成N份,这些数据同时并发写入N块磁盘,使得数据整体写入速度是一块磁盘的N倍;读取的时候也一样,因此RAID 0具有极快的数据读写速度。但是RAID 0不做数据备份,N块磁盘中只要有一块损坏,数据完整性就被破坏,其他磁盘的数据也都无法使用了。

RAID 1是数据在写入磁盘时,将一份数据同时写入两块磁盘,这样任何一块磁盘损坏都不会导致数据丢失,插入一块新磁盘就可以通过复制数据的方式自动修复,具有极高的可靠性。

结合RAID 0和RAID 1两种方案构成了RAID 10,它是将所有磁盘N平均分成两份,数据同时在两份磁盘写入,相当于RAID 1;但是平分成两份,在每一份磁盘(也就是N/2块磁盘)里面,利用RAID 0技术并发读写,这样既提高可靠性又改善性能。不过RAID 10的磁盘利用率较低,有一半的磁盘用来写备份数据。

一般情况下,一台服务器上很少出现同时损坏两块磁盘的情况,在只损坏一块磁盘的情况下,如果能利用其他磁盘的数据恢复损坏磁盘的数据,这样在保证可靠性和性能的同时,磁盘利用率也得到大幅提升。

顺着这个思路,RAID 3可以在数据写入磁盘的时候,将数据分成N-1份,并发写入N-1块磁盘,并在第N块磁盘记录校验数据,这样任何一块磁盘损坏(包括校验数据磁盘),都可以利用其他N-1块磁盘的数据修复。

但是在数据修改较多的场景中,任何磁盘数据的修改,都会导致第N块磁盘重写校验数据。频繁写入的后果是第N块磁盘比其他磁盘更容易损坏,需要频繁更换,所以RAID 3很少在实践中使用,因此在上面图中也就没有单独列出。

相比RAID 3,RAID 5是使用更多的方案。RAID 5和RAID 3很相似,但是校验数据不是写入第N块磁盘,而是螺旋式地写入所有磁盘中。这样校验数据的修改也被平均到所有磁盘上,避免RAID 3频繁写坏一块磁盘的情况。

如果数据需要很高的可靠性,在出现同时损坏两块磁盘的情况下(或者运维管理水平比较落后,坏了一块磁盘但是迟迟没有更换,导致又坏了一块磁盘),仍然需要修复数据,这时候可以使用RAID 6。

RAID 6和RAID 5类似,但是数据只写入N-2块磁盘,并螺旋式地在两块磁盘中写入校验信息(使用不同算法生成)。

从下面表格中你可以看到在相同磁盘数目(N)的情况下,各种RAID技术的比较。

在这里插入图片描述
RAID技术有硬件实现,比如专用的RAID卡或者主板直接支持;也可以通过软件实现,在操作系统层面将多块磁盘组成RAID,从逻辑上视作一个访问目录。RAID技术在传统关系数据库及文件系统中应用比较广泛,是改善计算机存储特性的重要手段。

RAID是如何解决关于存储的三个关键问题?

1.数据存储容量的问题

RAID使用了N块磁盘构成一个存储阵列,如果使用RAID 5,数据就可以存储在N-1块磁盘上,这样将存储空间扩大了N-1倍。

2.数据读写速度的问题

RAID根据可以使用的磁盘数量,将待写入的数据分成多片,并发同时向多块磁盘进行写入,显然写入的速度可以得到明显提高;同理,读取速度也可以得到明显提高。不过,需要注意的是,由于传统机械磁盘的访问延迟主要来自于寻址时间,数据真正进行读写的时间可能只占据整个数据访问时间的一小部分,所以数据分片后对N块磁盘进行并发读写操作并不能将访问速度提高N倍。

3.数据可靠性的问题

使用RAID 10、RAID 5或者RAID 6方案的时候,由于数据有冗余存储,或者存储校验信息,所以当某块磁盘损坏的时候,可以通过其他磁盘上的数据和校验数据将丢失磁盘上的数据还原。

我们对更强计算能力和更大规模数据存储的追求几乎是没有止境的,这似乎是源于人类的天性。神话里人类试图建立一座通天塔到神居住的地方,就是这种追求的体现。

水平伸缩

我在上一期提到过,在计算机领域,实现更强的计算能力和更大规模的数据存储有两种思路,一种是升级计算机,一种是用分布式系统。前一种也被称作“垂直伸缩”(scaling up),通过升级CPU、内存、磁盘等将一台计算机变得更强大;后一种是“水平伸缩”(scaling out),添加更多的计算机到系统中,从而实现更强大的计算能力。
在这里插入图片描述
在计算机发展的早期,我们获得更强大计算能力的手段主要依靠垂直伸缩。一方面拜摩尔定律所赐,每18个月计算机的处理能力提升一倍;另一方面由于不断研究新的计算机体系结构,小型机、中型机、大型机、超级计算机,不断刷新我们的认知。

但是到了互联网时代,这种垂直伸缩的路子走不通了,一方面是成本问题,互联网公司面对巨大的不确定性市场,无法为一个潜在的需要巨大计算资源的产品一下投入很多钱去购买大型计算机;另一方面,对于Google这样的公司和产品而言,即使是世界上最强大的超级计算机也无法满足其对计算资源的需求。

所以互联网公司走向了一条新的道路:水平伸缩,在一个系统中不断添加计算机,以满足不断增长的用户和数据对计算资源的需求。这就是最近十几年引导技术潮流的分布式与大数据技术。

RAID可以看作是一种垂直伸缩,一台计算机集成更多的磁盘实现数据更大规模、更安全可靠的存储以及更快的访问速度。而HDFS则是水平伸缩,通过添加更多的服务器实现数据更大、更快、更安全存储与访问。

RAID技术只是在单台服务器的多块磁盘上组成阵列,大数据需要更大规模的存储空间和更快的访问速度。将RAID思想原理应用到分布式服务器集群上,就形成了Hadoop分布式文件系统HDFS的架构思想。

垂直伸缩总有尽头,水平伸缩理论上是没有止境的,在实践中,数万台服务器的HDFS集群已经出现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/590212.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图像分割实战-系列教程1:语义分割与实例分割概述

🍁🍁🍁图像分割实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 下篇内容: Unet系列算法 1、图像分割任务概述 1.1 图像分割 分割任务就是在原始图像…

window的OPen方法,弹窗的特征

文章目录 一、介绍二、弹窗的特征 一、介绍 window.open() 方法是 JavaScript 中的一个内置方法,用于在浏览器中打开一个新的窗口或标签页。 语法: window.open(url, name, features, replace)二、弹窗的特征 open方法参数说明: 参数说明url要载入窗…

【算法】数论---取模运算法则

取模运算(余数运算)有一些基本的运算法则: (a b) % m (a % m b % m) % m(a - b) % m (a % m - b % m) % m(a * b) % m (a % m * b % m) % ma ^ b % p ((a % p)^b) % p 取模运算(余数运算)有一些基本的性质&…

2023年12月第4周面试算法题总结

809. 情感丰富的文字——阅读理解题 1、s “abcd”; words [“abc”]; 的情况怎么处理 2、怎么求lens与lenw?(连续出现的字符串长度) class Solution { public: bool isStretchy(const string& s, const string& word) {int i 0…

基于SpringBoot的医疗挂号管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SpringBoot的医疗挂号管理系统,java…

详述numpy中的np.random各个函数的用法

文章目录 引言np.random.rand()np.random.randn()np.random.randint(low,high,size,dtype)np.random.uniform(low,high,size)参考文献 引言 在机器学习还有深度学习中,经常会用到这几个函数,为…

AKShare学习笔记

AKShare学习笔记 本文内容参考AKShare文档。AKShare开源财经数据接口库采集的数据都来自公开的数据源,数据接口查询出来的数据具有滞后性。接口参考AKShare数据字典。 AKShare环境配置 安装Anaconda,使用Anaconda3-2019.07版本包,配置清华数…

Elasticsearch8集群部署

转载说明:如果您喜欢这篇文章并打算转载它,请私信作者取得授权。感谢您喜爱本文,请文明转载,谢谢。 本文记录在3台服务器上离线搭建es8.7.1版本集群。 1. 修改系统配置 1.1 hosts配置 在三台es节点服务器加入hostname解析&…

加法器原理详解

加法器的介绍与原理分析 什么是加法器? 加法器是一种数字电路,用于将两个二进制数相加并输出它们的和。 如何实现加法器 要讨论如何实现加法器就要先从只有一位的数字先进行考虑 一位二进制数相加 不考虑来自低位的进位——半加器 对于一位二进制…

【VTK三维重建-体绘制】第四期 VTK中GPU加速

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 前言 上期内容讲到VTK的体绘制技术vtkGPUVolumeRayCastMapper,本文分享VTK中GPU加速的相关内容,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞关注,小易会…

图像分割实战-系列教程7:unet医学细胞分割实战5(医学数据集、图像分割、语义分割、unet网络、代码逐行解读)

🍁🍁🍁图像分割实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 unet医学细胞分割实战1 unet医学细胞分割实战2 unet医学细胞分割实战3 unet医学细胞分割实战4 unet…

机器学习的分类与经典算法

机器学习算法按照学习方式分类,可以分为有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)、强化学习(Reinforcement Le…

[NAND Flash 5.1] 闪存芯片物理结构与SLC/MLC/TLC/QLC

依公知及经验整理,原创保护,禁止转载。 专栏 《深入理解NAND Flash》 <<<< 返回总目录 <<<< 前言 1 闪存芯片简介 闪存颗粒是固态硬盘中数据的真实存储地,就像机械硬盘的磁盘一样。 闪存颗粒flash memory是一种存储介质,重要的区别于传统机械盘…

bat脚本:将ini文件两行值转json格式

原文件 .ini&#xff1a;目标转换第2行和第三行成下方json [info] listKeykey1^key2^key3 listNameA大^B最小^c最好 ccc1^2^3^ ddd0^1^9目标格式 生成同名json文件&#xff0c;并删除原ini文件 [ { "value":"key1", "text":"A大" …

动态规划 | 最长公共子序列问题

文章目录 最长公共子序列题目描述问题分析程序代码复杂度分析 最短编辑距离题目描述问题分析程序代码复杂度分析 编辑距离题目描述输入格式输出格式 问题分析程序代码 最长公共子序列 题目描述 原题链接 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共…

图文证明 等价无穷小替换

等价无穷小替换 定义 等价无穷小是无穷小之间的一种关系&#xff0c;指的是&#xff1a;在同一自变量的趋向过程中&#xff0c;若两个无穷小之比的极限为1&#xff0c;则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。 设当 x → x 0 时…

Android 接入第三方数数科技平台

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、数数科技平台是什么&#xff1f;二、使用步骤1.集成SDK2. 初始化3. 发送事件和设置账号id4. 验证发送事件是否成功 小结 前言 一个成熟的App必然不可缺少对…

算法学习系列(十四):并查集

目录 引言一、并查集概念二、并查集模板三、例题1.合并集合2.连通块中点的数量 引言 这个并查集以代码短小并且精悍的特点&#xff0c;在算法竞赛和面试中特别容易出&#xff0c;对于面试而言&#xff0c;肯定不会让你去写一两百行的代码&#xff0c;一般出的都是那种比较短的…

服务器的TCP连接限制:如何优化并提高服务器的并发连接数?

&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308;&#x1f308; 欢迎关注公众号&#xff08;通过文章导读关注&#xff09;&#xff0c;发送【资料】可领取 深入理解 Redis 系列文章结合电商场景讲解 Redis 使用场景、中间件系列…

mysql基础-表操作

环境&#xff1a; 管理工具&#xff1a;Navicat 数据库版本&#xff1a;5.7.37 mysql的版本&#xff0c;我们可以通过函数&#xff0c;version()进行查看&#xff0c;本次使用的版本如下&#xff1a; 目录 1.管理工具 1.1创建表 1.2.修改表名 1.3.复制表 1.4.删除表 2…