计算机毕设 基于深度学习的植物识别算法 - cnn opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1, MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码

import tensorflow as tf
import numpy as np
from tensorflow.keras import layers, Sequential, Modelclass ConvBNReLU(layers.Layer):def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):super(ConvBNReLU, self).__init__(**kwargs)self.conv = layers.Conv2D(filters=out_channel, kernel_size=kernel_size, strides=strides, padding='SAME', use_bias=False,name='Conv2d')self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')self.activation = layers.ReLU(max_value=6.0)   # ReLU6def call(self, inputs, training=False, **kargs):x = self.conv(inputs)x = self.bn(x, training=training)x = self.activation(x)return xclass InvertedResidualBlock(layers.Layer):def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):super(InvertedResidualBlock, self).__init__(**kwargs)self.hidden_channel = in_channel * expand_ratioself.use_shortcut = (strides == 1) and (in_channel == out_channel)layer_list = []# first bottleneck does not need 1*1 convif expand_ratio != 1:# 1x1 pointwise convlayer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))layer_list.extend([# 3x3 depthwise conv layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),layers.ReLU(max_value=6.0),#1x1 pointwise conv(linear) # linear activation y = x -> no activation functionlayers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')])self.main_branch = Sequential(layer_list, name='expanded_conv')def call(self, inputs, **kargs):if self.use_shortcut:return inputs + self.main_branch(inputs)else:return self.main_branch(inputs)  

4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):shift_x = x - np.max(x)    # 防止输入增大时输出为nanexp_x = np.exp(shift_x)return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算
  • dim为1时,对某一个维度的列进行softmax计算
  • dim为-1 或者2 时,对某一个维度的行进行softmax计算
import torch
x = torch.tensor([2.0,1.0,0.1])
x.cuda()
outputs = torch.softmax(x,dim=0)
print("输入:",x)
print("输出:",outputs)
print("输出之和:",outputs.sum())

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()

# 二分类 损失函数
loss = torch.nn.BCELoss()
l = loss(pred,real)
# 多分类损失函数
loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):"""Performs a single optimization step.Arguments:closure (callable, optional): A closure that reevaluates the modeland returns the loss."""loss = Noneif closure is not None:loss = closure()for group in self.param_groups:weight_decay = group['weight_decay'] # 权重衰减系数momentum = group['momentum'] # 动量因子,0.9或0.8dampening = group['dampening'] # 梯度抑制因子nesterov = group['nesterov'] # 是否使用nesterov动量for p in group['params']:if p.grad is None:continued_p = p.grad.dataif weight_decay != 0: # 进行正则化# add_表示原处改变,d_p = d_p + weight_decay*p.datad_p.add_(weight_decay, p.data)if momentum != 0:param_state = self.state[p] # 之前的累计的数据,v(t-1)# 进行动量累计计算if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()else:# 之前的动量buf = param_state['momentum_buffer']# buf= buf*momentum + (1-dampening)*d_pbuf.mul_(momentum).add_(1 - dampening, d_p)if nesterov: # 使用neterov动量# d_p= d_p + momentum*bufd_p = d_p.add(momentum, buf)else:d_p = buf# p = p - lr*d_pp.data.add_(-group['lr'], d_p)return loss

6 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/58833.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WSL Opencv with_ffmpeg conan1.60.0

我是ubuntu18. self.options[“opencv”].with_ffmpeg True 关键是gcc版本需要conan支持&#xff0c;比如我的是&#xff1a; compilergcc compiler.version7.5 此外还需要安装系统所需库&#xff1a; https://qq742971636.blog.csdn.net/article/details/132559789 甚至来…

宏基官网下载的驱动怎么安装(宏基笔记本如何安装系统)

本文为大家介绍宏基官网下载的驱动怎么安装宏基笔记本驱动(宏基笔记本如何安装系统)&#xff0c;下面和小编一起看看详细内容吧。 宏碁笔记本怎么一键更新驱动 1. 单击“开始”&#xff0c;然后选择“所有程序”。 2. 单击Acer&#xff0c;然后单击Acer eRecovery Management。…

ChatGPT 制作可视化柱形图突出显示第1名与最后1名

对比分析柱形图的用法。在图表中显示最大值与最小值。 像这样的动态图表的展示只需要给ChatGPT,AIGC,OpenAI 发送一个指令就可以了, 人工智能会快速的写出HTML与JS代码来实现。 请使用HTML,JS,Echarts完成一个对比分析柱形图,在图表中突出显示第1名和最后1名用单独一种不…

Vue 项目性能优化 — 实践指南

前言 Vue 框架通过数据双向绑定和虚拟 DOM 技术&#xff0c;帮我们处理了前端开发中最脏最累的 DOM 操作部分&#xff0c; 我们不再需要去考虑如何操作 DOM 以及如何最高效地操作 DOM&#xff1b;但 Vue 项目中仍然存在项目首屏优化、Webpack 编译配置优化等问题&#xff0c;所…

idea查找maven所有依赖

文章目录 idea自带的依赖结构图idea安装maven helper插件 idea自带的依赖结构图 缺点是只有依赖&#xff0c;没有版本 idea安装maven helper插件 settings–>plugins–>搜索maven helper并安装 安装后打开pom.xml文件会有依赖解析 勾选conflict就是有冲突的依赖选中…

(笔记三)opencv图像基础操作

强调&#xff1a;本文只为学习记录做笔记 详细可参考opencv官网 &#xff1a;https://docs.opencv.org/4.1.1/d0/d86/tutorial_py_image_arithmetics.html &#xff08;1&#xff09;将cv2的BGR模式改为RGB模式 #!/usr/bin/env python # -*- coding:utf-8 -*- ""&q…

springboot中使用ElasticSearch

引入依赖 修改我们的pom.xml&#xff0c;加入spring-boot-starter-data-elasticsearch <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency>编写配…

React 项目中引入msal验证以及部分报错处理

功能实现 如何在React 项目中引入msal身份验证&#xff0c; 微软在官网有提供文档支持&#xff0c;文档包含示例和具体使用的教程&#xff0c;地址如下&#xff1a; https://learn.microsoft.com/zh-cn/azure/active-directory/develop/tutorial-v2-nodejs-webapp-msal 照着文…

TP DP PP 并行训练方法介绍

这里写目录标题 张量并行TP流水线并行 PPnaive模型并行GPipePipeDream 数据并行DPFSDP 张量并行TP 挖坑 流水线并行 PP 经典的流水线并行范式有Google推出的Gpipe&#xff0c;和微软推出的PipeDream。两者的推出时间都在2019年左右&#xff0c;大体设计框架一致。主要差别为…

Bean的生命周期和执行流程

文章目录 一.Bean的生命周期1.Bean的作用域2.设置Bean的作用域3.Spring的执行流程4.Bean的生命周期 一.Bean的生命周期 1.Bean的作用域 Bean的作用域指的是Bean在Spring容器中的某种行为模式,默认是singleton(单例模式)&#xff0c;一共分为6种,后四种用于spring mvc中有用 si…

无涯教程-Android - Broadcast Receivers

Broadcast Receivers 仅响应来自其他应用程序或系统本身的广播消息&#xff0c;这些消息有时称为events或intents。例如&#xff0c;应用程序还可以启动广播&#xff0c;以使其他应用程序知道某些数据已下载到设备并可供他们使用&#xff0c;因此广播接收器将拦截此通信并启动适…

avalonia、WPF使用ScottPlot动态显示ECG心电图

文章目录 avalonia、WPF使用ScottPlot动态显示ECG心电图实现效果&#xff0c;动态效果懒得录视频了安装代码部分UpdateData方法就是用来更新心电图表的方法&#xff0c; 根据消息队列数据去更新是视图中的ScottPlot 图表 avalonia、WPF使用ScottPlot动态显示ECG心电图 avalonia…

VR全景:助力乡村振兴,实现可持续发展

引言&#xff1a; 随着科技的飞速发展&#xff0c;虚拟现实&#xff08;VR&#xff09;全景技术正在以惊人的速度改变着我们的生活方式和产业格局。全景技术不仅在娱乐、教育等领域取得了巨大成功&#xff0c;也为乡村振兴提供了全新的机遇。通过以乡村为背景的VR全景体验&…

2023-08-27 LeetCode每日一题(合并区间)

2023-08-27每日一题 一、题目编号 56. 合并区间二、题目链接 点击跳转到题目位置 三、题目描述 以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#…

Python实战之数据表提取和下载自动化

在网络爬虫领域&#xff0c;动态渲染类型页面的数据提取和下载自动化是一个常见的挑战。本文将介绍如何利用Pyppeteer库完成这一任务&#xff0c;帮助您轻松地提取动态渲染页面中的数据表并实现下载自动化。 一、环境准备 首先&#xff0c;确保您已经安装了Python环境。接下来…

SQLServer2008数据库还原失败 恢复失败

源地址&#xff1a;http://www.taodudu.cc/news/show-1609349.html?actiononClick 还原数据库问题解决方案 在还原数据库“Dsideal_school_db”时&#xff0c;有时会遇见上图中的问题“因为数据库正在使用&#xff0c;所以无法获得对数据库的独占访问权”&#xff0c;此时我们…

【SQL】1731. 每位经理的下属员工数量 ( 新思想:确定左表,依次添加后续字段)

leetcode题目链接 注意点 确定左表&#xff08;即&#xff0c;确定result表中的主键)&#xff0c;依次添加后续字段。注意&#xff1a;主键可能是一个字段&#xff0c;也可能是多个字段COUNT(DISTINCT())&#xff0c;一般为了防止重复&#xff0c;使用COUNT计数时&#xff0c…

数据仓库总结

1.为什么要做数仓建模 数据仓库建模的目标是通过建模的方法更好的组织、存储数据&#xff0c;以便在性能、成本、效率和数据质量之间找到最佳平衡点。 当有了适合业务和基础数据存储环境的模型&#xff08;良好的数据模型&#xff09;&#xff0c;那么大数据就能获得以下好处&…

以“迅”防“汛”!5G视频快线筑牢防汛“安全堤”

近期&#xff0c;西安多地突发山洪泥石流灾害。防洪救灾刻不容缓&#xff0c;为进一步做好防汛工作&#xff0c;加强防洪调度监管&#xff0c;切实保障群众的生命财产安全&#xff0c;当地政府管理部门亟需拓展智能化技术&#xff0c;通过人防技防双保障提升防灾救灾应急处置能…

Ubuntu20.04配置mysql配置主从复制

ubuntu20.04&#xff1a;mysql主库 sudo vim /etc/mysql/mysql.conf.d/mysqld.cnf # 修改完毕重启 sudo service mysql stop sudo service mysql start主库mysqld.cnf配置 [mysqld] ... # bind-address>->--- 127.0.0.1 # 注释掉&#xff0c;允许外部连接 # mysqlx-b…