互联网加竞赛 基于Django与深度学习的股票预测系统

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Django框架
  • 4 数据整理
  • 5 模型准备和训练
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于Django与深度学习的股票预测系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

随着经济的发展,我国的股票市场建设正不断加强,社会直接融资正获得重要发展。股票市场行情的涨落与国民经济的发展密切相关。股票作为一种资本融资和投资的工具,是一种资本的代表形式,股票市场可以让上市公司便捷地在国内和国际市场融资。个人投资者、投资机构期望通过技术手段进行投资分析,能够从股票市场获得一定相对高额的投资收益。

2 实现效果

主界面
在这里插入图片描述
详细数据查看
在这里插入图片描述
股票切换
在这里插入图片描述

相关html


DOCTYPE html>



股票预测系统title><br/> {% load static %}<br/>

3 Django框架

Django是一个基于Web的应用框架,由python编写。Web开发的基础是B/S架构,它通过前后端配合,将后台服务器的数据在浏览器上展现给前台用户的应用。Django本身是基于MVC模型,即Model(模型)+View(视图)+
Controller(控制器)设计模式,View模块和Template模块组成了它的视图部分,这种结构使动态的逻辑是剥离于静态页面处理的。
Django框架的Model层本质上是一套ORM系统,封装了大量的数据库操作API,开发人员不需要知道底层的数据库实现就可以对数据库进行增删改查等操作。Django强大的QuerySet设计能够实现非常复杂的数据库查询操作,且性能接近原生SQL语句。Django支持包括PostgreSQL、My
Sql、SQLite、Oracle在内的多种数据库。Django的路由层设计非常简洁,使得将控制层、模型层和页面模板独立开进行开发成为可能。基于Django的Web系统工程结构示意图如图所示。

在这里插入图片描述

从图中可以看到,一个完整的Django工程由数个分应用程序组成,每个分应用程序包括四个部分:

urls路由层 :决定Web系统路由结构,控制页面间的跳转和数据请求路径

在这里插入图片描述

views视图层
:业务层,主要进行逻辑操作和运算,是前端页面模板和后端数据库之间的桥梁。Django框架提供了大量的数据库操作API,开发人员甚至不需要使用SQL语句即可完成大部分的数据库操作。
在这里插入图片描述

models模型层
:Web应用连接底层数据库的关键部分,封装了数据库表结构和实现。开发人员可以在Model层按照Django的指令要求进行建表,无须使用SQL语句或者第三方建表工具进行建表。建表的过程类似于定义变量和抽象编程语言中的类,非常方便。

在这里插入图片描述

templates模板层
:HTML模板文件,后端数据会填充HTML模板,渲染之后返回给前端请求。考虑到项目周期尽可能小,尽快完成平台的搭建,项目决定采用开源的Django框架开发整个系统的Web应用层。

在这里插入图片描述
关键代码


def main():
os.environ.setdefault(‘DJANGO_SETTINGS_MODULE’, ‘ExamOnline.settings’)
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn’t import Django. Are you sure it’s installed and "
"available on your PYTHONPATH environment variable? Did you "
“forget to activate a virtual environment?”
) from exc
execute_from_command_line(sys.argv)


4 数据整理

对于LSTM来说,至少需要两步整理过程:

  • 归一化
  • 变成3D样本(样本,时间步,特征数)

对于神经网络来说,归一化至关重要。如果缺失,会无法顺利训练和学习,俗称:Train不起来。对于LSTM来说,更为重要,因为LSTM内部包含tanh函数使得输出范围在-1到1之间。这就需要我们将预测值也进行归一化,常见的做法就是直接归一化到0和1之间。

将一般的特征X和目标y变成3D,我这里提供了一个函数,输入为原始的X_train_raw,X_test_raw,y_train_raw,y_test_raw。​n_input
为需要多少步历史数据,n_output为预测多少步未来数据。


def transform_dataset(train_set, test_set, y_train, y_test, n_input, n_output):
all_data = np.vstack((train_set, test_set))
y_set = np.vstack((y_train, y_test))[:,0]
X = np.empty((1, n_input, all_data.shape[1]))
y = np.empty((1, n_output))
for i in range(all_data.shape[0] - n_input - n_output):
X_sample = all_data[i:i + n_input, :]
y_sample = y_set[i + n_input:i + n_input + n_output]
if i == 0:
X[i] = X_sample
y[i] = y_sample
else:
X = np.append(X, np.array([X_sample]), axis=0)
y = np.append(y, np.array([y_sample.T]), axis=0)
train_X = X[:train_set.shape[0] - n_input, :, :]
train_y = y[:train_set.shape[0] - n_input, :]
test_X = X[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :, :]
test_y = y[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :]
return train_X, train_y, test_X, test_y

5 模型准备和训练

Keras已经包含LSTM
网络层,调用方式和普通的神经网络没有特别大的区别,仅仅需要指定输入数据的shape。这里我们设计一个简单的神经网络,输入层为LSTM,包含20个节点,输出层为普通的Dense,损失函数采用mean_absolute_error。


n_timesteps, n_features, n_outputs = train_X.shape[1], train_X.shape[2], train_y.shape[1]
# create a model
model = Sequential()
model.add(LSTM(10, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
kernel_regularizer=regularizers.l2(0.0),return_sequences=False))
#model.add(LSTM(20, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
# kernel_regularizer=regularizers.l2(0.0)))

model.add(Dense(n_outputs,kernel_initializer='glorot_uniform',kernel_regularizer=regularizers.l2(0.0)))model.compile(optimizer='adam', loss='mean_absolute_error')
print(model.summary())

调用fit函数对训练集进行学习。由于时间序列具有很明显的趋势,因此有必要将样本打乱。这里需要说明:我们打乱的是“样本”,不影响每个样本内在的序列关系。LSTM只会根据样本内在的序列关系(时间步)来更新自己的隐状态。


from sklearn.utils import shuffle
train_X,train_y = shuffle(train_X,train_y,random_state=42)
plt.plot(train_y)
# fit the RNN model
history = model.fit(
train_X,
train_y,
epochs=300,
batch_size=512,
validation_split=0.3)
figure = plt.Figure()
plt.plot(history.history[‘loss’],
‘b’,
label=‘Training loss’)
plt.plot(history.history[‘val_loss’],
‘r’,
label=‘Validation loss’)
plt.legend(loc=‘upper right’)
plt.xlabel(‘Epochs’)
plt.show()

查看loss曲线,确保训练已经稳定。
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586563.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

php学习05-常量

常量可以理解为值不变的量。常量值被定义后&#xff0c;在脚本的其他任何地方都不能改变。一个常量由英文字母、下划线和数字组成&#xff0c;但数字不能作为首字母出现。 在PHP中使用define()函数来定义常量&#xff0c;该函数的语法格式如下&#xff1a; define(string cons…

【双十一特辑】爱心代码(程序员的浪漫)-李峋

前言 最近《点燃我温暖你》中李峋的爱心代码超级火&#xff0c;看着特别心动&#xff0c;这不&#xff0c;光棍节快到了&#xff0c;给兄弟们教学一波爱心代码&#xff0c;赶在双十一前表白&#xff0c;让这个双十一不在是孤单一个人&#xff01; 目录 前言 C语言简易爱心代码…

[大厂实践] Chick-fil-A的服务API流程实践

本文介绍了美国快餐连锁巨头Chick-fil-A在技术团队中引入Buf和Connect解耦API依赖并实现了良好的API定义模式。原文: Connect(ing) Chick-fil-A 背景 2018年&#xff0c;Chick-fil-A的客户技术团队遇到了一些API问题。该团队擅长构建API&#xff0c;这些API可以实现一些了不起的…

【Spring实战】13 Security+Thymeleaf自定义登录页面

文章目录 1. 执行流程2. 为什么要自定义登录页面3. 创建登录页面4. 配置 Spring Security5. 创建请求 API6. 启动服务7. 验证8. 代码详细总结 Spring Security 是一个强大的身份验证和访问控制框架&#xff0c;而 Thymeleaf 是一个用于构建动态 Web 页面的强大模板引擎。结合它…

django基础学习

django基础学习 文章目录 django基础学习django框架urls.py将请求发送到正确的视图views.py处理请求models.py定义数据模型根据models查询数据HTML模板呈现数据 Django项目结构创建虚拟环境下载django创建站点创建应用settings.py项目设置 通用类别视图会话框架身份验证视图使用…

python+django校园篮球论坛交流系统v5re9

本课题使用Python语言进行开发。基于web,代码层面的操作主要在PyCharm中进行&#xff0c;将系统所使用到的表以及数据存储到MySQL数据库中 技术栈 系统权限按管理员和用户这两类涉及用户划分。 (a) 管理员&#xff1b;管理员使用本系统涉到的功能主要有&#xff1a;首页、个人中…

【docker实战】安装tomcat并连接mysql数据库

本节用docker来安装tomcat&#xff0c;并用这个tomcat连接我们上一节安装好的mysql数据库 一、拉取镜像 [rootlocalhost data]# docker pull tomcat:8.5.69二、运行tomcat bitnami的tomcat的根目录在/opt/bitnami/tomcat/webapps下面&#xff0c;所以我们为了方便部署我们的…

【http】缓存协议

✨ 专栏介绍 在当今互联网时代&#xff0c;计算机网络已经成为了人们生活和工作中不可或缺的一部分。而要实现计算机之间的通信和数据传输&#xff0c;就需要依靠各种网络协议来进行规范和约束。无论是浏览网页、发送电子邮件还是进行在线交流&#xff0c;都离不开各种各样的网…

【owt-server】一些构建项目梳理

【owt-server】清理日志&#xff1a;owt、srs、ffmpeg 【owt】p2p client mfc 工程梳理【m98】webrtc vs2017构建带符号的debug库【OWT】梳理构建的webrtc和owt mfc工程 m79的mfc客户端及owt-client

【MySQL变更】gh-ost原理解读

gh-ost简介 gh-ost是处理MySQL在线表结构变更的工具&#xff0c;与pt-osc 不同&#xff0c;gh-ost不会使用触发器。 gh-ost 可以进行测试&#xff0c;暂停&#xff0c;动态控制和重新配置&#xff0c;审计还有其他许多操作perks。 命名 最初它被命名为gh-osc&#xff1a;Git…

C语言课程设计参考题目

一、工资管理系统 需求分析 工资信息存放在文件中&#xff0c;提供文件的输入、输出等操作&#xff1b;要实现浏览功能&#xff0c;提供显示、排序操作&#xff1b;而查询功能要求实现查找操作&#xff1b;另外还应该提供键盘式选择菜单以实现功能选择。 2、总体设计 整个系统可…

虚拟化技术和云计算的关系

1、云计算底层就是虚拟化技术。 &#xff08;1&#xff09;常见的虚拟化技术&#xff1a;VMware&#xff08;闭源的&#xff0c;需要收费&#xff09;、XEN、KVM &#xff08;2&#xff09;大部分公司用的虚拟化方案&#xff1a;XEN、KVM 2、虚拟化的历史 &#xff08;1&am…

redhat 8 安装openstack

redhat 8 安装openstack 1、安装文档2、redhat 8 安装openstack3、使用openstack 1、安装文档 openstack官方安装文档 https://docs.openstack.org/install-guide/ 2、redhat 8 安装openstack 3、使用openstack

华为hcia之ipv6实验手册

R3: dhcp enable ipv6 dhcpv6 pool test address prefix 2000:23::/64 excluded-address 2000:23::2 dns-server 2000:23::2 interface GigabitEthernet0/0/0 ipv6 enable ipv6 address 2000:12::2/64 ipv6 address auto link-local undo ipv6 nd ra halt //无状态配置 inter…

思维训练-怎样设计一个MQ

架构师需要做各种设计&#xff0c;要不断地提高自己的设计能力。这有没有方法可以训练呢&#xff1f;有的&#xff0c;就是看到什么、想到什么&#xff0c;就假设对面坐着产品经理&#xff0c;一起讨论怎么把它设计出来。比如怎样设计一个MQ 我&#xff1a;首先我确认一下需求。…

基于Python的电商手机数据可视化分析和推荐系统

1. 项目简介 本项目旨在通过Python技术栈对京东平台上的手机数据进行抓取、分析并构建一个简单的手机推荐系统。主要功能包括&#xff1a; 网络爬虫&#xff1a;从京东获取手机数据&#xff1b;数据分析&#xff1a;统计各厂商手机销售分布、市场占有率、价格区间和好评率&am…

SQL Server 存储过程 触发器 事务处理

CSDN 成就一亿技术人&#xff01; 难度指数&#xff1a;* * CSDN 成就一亿技术人&#xff01; 目录 1. 存储过程的作用 创建存储过程 2. 触发器 触发器的种类 insert触发器 update触发器 delete触发器 测试 3. 事务 开始事务 提交事务 回滚事务 举个实例 在 SQ…

java设计模式实战【策略模式+观察者模式+命令模式+组合模式,混合模式在支付系统中的应用】

引言 在代码开发的世界里&#xff0c;理论知识的重要性毋庸置疑&#xff0c;但实战经验往往才是知识的真正试金石。正所谓&#xff0c;“读万卷书不如行万里路”&#xff0c;理论的学习需要通过实践来验证和深化。设计模式作为软件开发中的重要理论&#xff0c;其真正的价值在…

VMvare虚拟机中文件夹共享防火墙设置

目录 一、虚拟机jdk及tomcat配置 1.1 JDK配置 1.2 tomcat配置 二、文件夹共享 2.1 为什么需要配置文件夹共享功能 2.2 高级共享和普通共享 三、防火墙设置 入站规则和出站规则 四、思维导图 一、虚拟机jdk及tomcat配置 1.1 JDK配置 (1) 双击jdk &#xff08;2&#xf…

WPF 消息日志打印帮助类:HandyControl+NLog+彩色控制台打印+全局异常捕捉

文章目录 前言相关文章Nlog配置HandyControl配置简单使用显示效果文本内容 全局异常捕捉异常代码运行结果 前言 我将简单的HandyControl的消息打印系统和Nlog搭配使用&#xff0c;简化我们的代码书写 相关文章 .NET 控制台NLog 使用 WPF-UI HandyControl 控件简单实战 C#更改…