Halcon阈值处理的几种分割方法threshold/auto_threshold/binary_threshold/dyn_threshold

Halcon阈值处理的几种分割方法

文章目录

  • Halcon阈值处理的几种分割方法
    • 1. 全局阈值
    • 2. 基于直方图的自动阈值分割方法
    • 3. 自动全局阈值分割方法
    • 4. 局部阈值分割方法
    • 5. var_threshold算子
    • 6 . char_threshold 算子
    • 7. dual_threshold算子

在场景中选择物体或特征是图像测量或识别的重要基础,而阈值处理是最简单也最常用的区域
选择方法,特别适用于目标和背景的灰度有明显区别的情况。下面就介绍几种常用的阈值处理方法。

1. 全局阈值

首先来看什么是阈值。简单来说,闽值就是一个指定的像素灰度值的范围。假设阈值为0~255灰度值,阈值处理就是将图像中的像素灰度值与该阈值进行比较,落在该范围内的像素称为前景,其余的像素称为背景。一般会用黑白两色来表示前景与背景。这样图像就变成了只有黑与白两种颜色的二值图像。
当检测对象的图像灰度与背景差异比较大时,用阈值处理可以很方便地将其与背景分离开来。根据像素与相邻像素之间的灰度值差异设置一个阈值,可以将像素与其相邻像素分隔开来。如果是在图像边缘,可以利用边缘的灰度差值进行简单的阈值处理,有助于沿边界分割图像。在Halcon中,可使用threshold算子进行全局阈值处理。举例如下:

read_image (Image,'data/codes')
rgbl_to_gray (Image, GrayImage)
threshold (GrayImage, DarkArea, 0,128)

该程序的阈值处理结果如图所示,其中图(a)为输入图像,图(b)中的红色区域为阅值处理后提取出的较暗区域。
在这里插入图片描述
在上面的例子中,threshold 算子的第1个参数Graylmage 为输入图像,这里用的是灰度图;第2个参数DarkArea 为输出的区域,类型为Region;第3个和第4个参数为阀值的区间值,表示0~128 灰度范围内的像素区域。

2. 基于直方图的自动阈值分割方法

有时手动设定阈值并不是一个严谨的方法,因为人对图像灰度的感受并不精准,即使对同一场景,当光线有微妙变化时,灰度也会有差异。手动设定阈值在粗估计时可能是一个便捷的方法,但是随着后续计算步骤的叠加,将带来不可估量的误差。在连续采集的图像中,图像的灰度也是动态变化的,环境光照、拍摄角度等因素都会影响图像的灰度。如果阈值是一个固定的值,那么在处理连续图像时结果会不够准确。因此,可以使用自适应阙值进行调节。
自适应阈值是一种基于直方图的阈值。直方图是图像像素落在0~253这个区间内的数量统计图。通过直方图可以看出图像灰度的大致分布,在有些情况下甚至可以估+检测对象的面积与结构。
在Halcon 中使用auto_threshold算子进行自适应阈值处理。该算子可以对单通道图像进行多重闽值处理,其原理是,以灰度直方图中出现的谷底为分割点,对灰度直方图的波峰进行分割。因此,有多少个波峰,就会分割出多少个区域。auto_threshold 算子的第3个参数Sigma(此例中为8.0)是一个平滑算子,可以对直方图进行平滑处理。举例如下:

read_image (Image,'data/shapes')
rgbl_to_gray (Image, GrayImage)
auto_threshold(GrayImage,Regions,8.0)

该程序的阈值处理结果如图所示,其中图(a)为灰度图像,包括几种不同灰度的对象.图(b)用3种不同的颜色区分了自动阈值分割出的3个区域。其中圆形与矩形物体因为灰度值相近被分割为同一区域;三角形的灰度值与另外两种有差异,被分割为单独的区域;背景灰度值最大,也被分割为一个单独的区域。
在这里插入图片描述
auto_threshold算子的前两个参数分别为输入的Image图像和输出的Region类型的区域。第3个参数 Sigma 为对灰度直方图进行高斯平滑的核的大小。高斯卷积运算,其计算原理是,先确定图像的绝对灰度直方图,然后使用高斯滤波器对该直方图进行平滑处理。在本例中,设Sigma 值为8.0,对灰度直方图的平滑效果如图所示。
在这里插入图片描述
图 (a)为原始灰度直方图,可以看出波峰比较多,如不处理将产生大量的分割区域,不利于提取出有意义的部分,因此这里将Sigma 值设得大一些,使波峰变得平滑。图(b)为Sigma为8.0时对灰度直方图进行高斯平滑后的效果,可见波峰明显减少到了3个,因此图像中自动分割的区域也减少到了3部分。
因此,Sigma的值越大,平滑效果越显著,直方图波峰越少,分割出的区域也越少;反之,Sigma的值越小,直方图平滑的效果越不明显,分割的次数也越多。同时可以使用gray_histo 算子和gen_region_histo 算子查看Sigma参数对灰度直方图的影响。

3. 自动全局阈值分割方法

除了auto_threshold算子外,还常用binary_threshold算子对直方图波峰图像进行自动阈值分割。binary_threshold 算子同样利用了直方图,但不同的是,该算子是根据直方图中的像素分布提供可选的分割方法,如使用最大类间方差法或平滑直方图法,都可以自动计算出一个灰度级别用于分割区域。
同时,该算子也可以选择提取较亮还是较暗的范围,尤其适用于在比较亮的背景图像上提取比较暗的字符。举例如下:

read_image (Image, 'data/codes')
rgbl_to_gray (Image, GrayImage)
binary threshold (GrayImage, RegionMaxSeparabilityLight, 'max _separability', 'dark', UsedThreshold)

该程序运行效果如图所示,其中图(a)为灰度图像,图(b)为使用binary _threshold算子进行阈值分割后的图像。
在这里插入图片描述
binary_threshold算子的前两个参数分别为输入和输出的对象。第3个参数为分割的方法,这个例子中选择max_separability,表示在直方图中对最大的可分性进行分割;也可以选择smooth histo,表示平滑直方图,平滑的原理与auto_threshold算子类似。第4个参数表示提取前景还是背景,这里选择dark,表示提取较暗的部分;也可以选择light,表示提取较亮的部分。最后一个参数UsedThreshold 为返回结果,将返回所用的阈值。

4. 局部阈值分割方法

上文介绍了几种全局阈值分割方法,本小节介绍一个基于局部阈值分割的dyn_threshold算子。它适用于一些无法用单一灰度进行分割的情况,如背景灰度比较复杂,有的部分比前景目标亮,有的部分比前景目标暗;又如前景目标包含多种灰度,因而无法用全局阈值完成分割。该算子利用邻域,通过局部灰度对比,找到一个合适的阈值进行分割。
dyn_threshold 算子的应用步骤一般分三步:首先,读取原始图像;然后,使用平滑滤波器对原始图像进行适当平滑;最后,使用dyn threshold算子比较原始图像与均值处理后的图像局部像素差异,将差异大于设定值的点提取出来。
举一个例子,如图(a)所示,该图中前景部分的字符颜色不均匀,无法用单一的灰度阈值进行提取,因此可以使用局部阈值分割方法进行提取。代码举例如下:

read_image (Image, Idata/text')
*将图像转换为灰度图
rgb1_to_gray (Image, GrayImage)
*由于图像对比度比较低,因此对图像进行相乘,增强对比度
mult_image (GrayImage, GrayImage, ImageResult, 0.005, 0)
*使用平滑滤波器对原始图像进行适当平滑
mean _image (ImageResult, ImageMean, 50,50)
*动态阈值分割,提取字符区域
dyn_threshold (ImageResult, ImageMean, RegionDynThresh, 4, 'not_equal')
*开运算,去除无意义的小的杂点
opening_circle (RegionDynThresh, Region0pening, 1.5)
*显示结果
dev_clear_window()
dev_display (RegionOpening)

该段代码运行效果如图所示,其中图(a)为灰度图像,图像中的字符部分颜色不均;图(b)为用dyn_threshold算子进行阈值分割后的图像。
在这里插入图片描述
再举一个使用动态阈值进行轮廓提取的例子。如图(a)所示,该图的前景与背景部分灰度都不均匀,因而无法用全局阈值进行提取,这时可以用dyn_threshold算子提取前景的轮廓。代码如下:

read_image (Image, 'data/garlic')
*将图像转换为灰度图
rgbl_to_gray (Image, GrayImage)
*使用平滑滤波器对原始图像进行适当平滑
mean_image (GrayImage, ImageMean, 30,30)
*动态阈值分割,提取字符区域
dyn_threshold (GrayImage, ImageMean, RegionDynThresh, 30, 'not_equal')
*腐蚀操作,去除杂点
erosion_circle (RegionDynThresh, RegionClosing, 1.5)

该段代码运行效果如图所示,其中图(a)为灰度图像,前景目标灰度复杂,背景因为光
照不均匀,局部甚至比前景目标更亮;图(b)为使用dyn_threshold算子进行阈值分割后的图像。
在这里插入图片描述
dyn_threshold算子的第1个参数为输入的灰度图像。第2个参数为输入的预处理图像,这里食用Mean_Image得到了一张均值图像,用于做局部灰度对比。第3个参数为输出的阈值区域。第。个参数是offset值,是将原图与均值图像作对比后设定的值,灰度差异大于该值的将被提取出来第5个参数决定了提取的是哪部分区域,一般有如下4个选择。
(1)light:表示原图中大于等于预处理图像像素点值加上offset值的像素被选中。
(2)dark:表示原图中小于等于预处理图像像素点值减去offset 值的像素被选中。
(3)equal:表示原图中像素点大于预处理图像像素点值减去offset值,小于预处理图像像素点值加上offset 值的点被选中。
(4)not_equal:表示与equal相反,它的提取范围在equal范围以外。
该算子适用于在复杂背景下提取前景目标的轮廓,或无法用单一灰度阈值提取边缘等情况。注意
实际应用中可以根据图像的灰度值,设置均值滤波器的系数和动态阙值的参数。

5. var_threshold算子

除了dyn threshold算子可以利用局部像素灰度差进行分割外,var_threshold算子也是一种基于局部动态阈值的分割方法。该方法分割的依据是局部的均值和标准差,选择图像中邻域像素满足阈值条件的区域进行分割。该阈值不是一个固定的值,而是在点(x,))的邻域中使用矩形mask进行扫描,分别用点(x,y)的灰度与均值图像中的点(x,y)的灰度,和矩形的中心点的标准差灰度进行比较。该矩形 mask的长宽需要是奇数,这样便于找到矩形的中心点,其具体的宽和高应该略大于待分割的图像区域。举例如下:

read _image (Image,'data/holes')rgbl _to_gray (Image, GrayImage)*设置矩形,选择感兴趣区域
gen_rectanglel (Rectangle, 170, 80, 370, 510)
reduce_domain (GrayImage, Rectangle, ImageReduced)
var _threshold (ImageReduced, Region, 15, 15, 0.2, 35, 'dark')

该程序的运行效果如图所示,其中图(a)为输入图像,图(b)为使用 var_threshold算子进行阈值分割后的图像,灰度变化符合阈值的区域被提取了出来。
在这里插入图片描述
该算子的第1个参数为输入的灰度图像;第2个参数为输出的阈值区域;第3个和第4个参数为用于扫描邻域的矩形 mask的宽和高;第5个参数为标准差因子,用于计算灰度标准差,默认为0.2;第6个参数为设定的绝对阈值,该值用于比较矩形区域内的灰度标准差与均值图像的最小灰度值;第7个参数决定了提取的是哪部分区域,一般有4个选择,即dark、light、equal、not_equal,具体解释与dyn_threshold算子相同。

6 . char_threshold 算子

核算子一般用来提取字符,适用于在明亮的背景上提取黑暗的字符。该算子的运算过程如下:首先计算一个灰度曲线;然后给定一个Sigma值,用于平滑这个曲线;最后将前景与背景区分开来。分割的阈值取决于直方图中的最大值。例如,如果选择百分比为95%,灰度阈值将锁定在距离直方图峰值的5%左右的区域,因为这个算子假定的是字符的灰度都暗于背景。举例如下:

read_ image (Char, 'data/char')
rgbl_to_gray (Char, GrayImage)
char_threshold (GrayImage, GrayImage, Characters, 6, 95, Threshold)

该程序的运行效果如图所示,其中图(a)为灰度图像,图(b)为使用char_threshold算子进行阈值分割后的图。
在这里插入图片描述
与binary_threshold 算子相比,char_threshold算子适用于直方图的波峰之间没有明确的谷底的情况,或者是直方图没有明确的峰值的情况。这种情况是可能出现的,如图像中只包含几个字符,或者是存在不规则光照。

7. dual_threshold算子

该算子表示双阈值处理,其原型如下:
dual threshold(Image : RegionCrossings : MinSize, MinGray, Threshold 😃
该定义来自Halcon官方文档。其第1个参数为输入图像,第2个参数为阈值处理的输出区域,第3个参数为分割出的区域的最小面积,第4个参数为区域的灰度下限,第5个参数为灰度阈值Threshold。该阈值处理可以看作是对两个方向进行了阈值分割,不但提取出了灰度大于等于Threshold 值的范围,也提取出了小于等于-Threshold值的范围。
之所以会有负的灰度值,是因为dual threshold算子在处理之前一般会先对原始图像进行拉普拉斯操作,输入的图像一般是拉普拉斯图像,这类图像包含正的和负的灰度值的区域。
满足灰度阈值并符合面积条件,同时还满足最小灰度条件的区域将最终被分割出来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/584959.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux网络编程学习心得.4

1.epoll工作模式 水平触发 LT 边沿触发 ET 因为设置为水平触发,只要缓存区有数据epoll_wait就会被触发,epoll_wait是一个系统调用,尽量少调用 所以尽量使用边沿触发,边沿出触发数据来一次只触发一次,这个时候要求一次性将数据读完,所以while循环读,读到最后read默认带阻塞…

Glary Utilities Pro - 电脑系统优化全面指南:详尽使用教程

软件简介: Glary Utilities Pro 是一款全面的电脑优化工具,它旨在帮助用户提升计算机的性能和稳定性。这款软件提供了多种功能,包括系统清理、优化、修复以及保护。通过一键扫描,它可以识别并清除无用文件、临时数据、注册表错误等…

AI大模型时代下运维开发探索第二篇:基于大模型(LLM)的数据仓库

在SREWorks社区聚集了很多进行运维数仓建设的同学,大家都会遇到类似的挑战和问题: 数仓中存储大量数据消耗成本,但很多存储的数据却并没有消费。进数仓的ETL学习成本高、管理成本高,相关同学配合度低,以及上游结构改动…

element表格排序功能

官方展示 个人项目 可以分别对每一项数据进行筛选 注&#xff1a;筛选的数据不能是字符串类型必须是数字类型&#xff0c;否则筛选会乱排序 html <el-table :data"tableData" border height"600" style"width: 100%"><el-table-co…

K8s陈述式资源管理

命令行&#xff1a;kubectl命令行工具 优点&#xff1a;90%以上的场景都可以满足 对资源的增删改查比较方便&#xff0c;对改不是很友好。 缺点&#xff1a;命令比较冗长&#xff0c;复杂&#xff0c;难记 声明式&#xff1a; 看到声明式都是k8s当中的yml文件来实现资源管理…

什么是uniapp?用uniapp开发好不好用?

随着移动应用市场的持续发展&#xff0c;开发者们面临着不断增长的需求和多样化的平台选择。在这个背景下&#xff0c;UniApp 应运而生&#xff0c;成为一种跨平台开发框架&#xff0c;为开发者提供了一种高效、简便的方式来开发移动应用程序。利用 UniApp 开发应用程序可以节省…

天擎终端安全管理系统clientinfobymid存在SQL注入漏洞

产品简介 奇安信天擎终端安全管理系统是面向政企单位推出的一体化终端安全产品解决方案。该产品集防病毒、终端安全管控、终端准入、终端审计、外设管控、EDR等功能于一体&#xff0c;兼容不同操作系统和计算平台&#xff0c;帮助客户实现平台一体化、功能一体化、数据一体化的…

Django 文件上传(十二)

当 Django 处理文件上传时&#xff0c;文件数据最终会被放置在 request.FILES 。 查看文档&#xff1a;文件上传 | Django 文档 | Django Django工程如下&#xff1a; 创建本地存储目录 在static/应用目录下创建uploads目录用于存储接收上传的文件 在settings.py 配置静态目…

IDEA/VScode + Git Blame

IDEA IDEA中支持查看每行代码的commit信息&#xff0c;这是靠git blame命令来完成的。 鼠标悬置在上面&#xff0c;可以看到更多信息。 VScode vscode中有相应插件完成类似的工作。 找到一个Git Blame插件&#xff0c;就是专门用来完成这项工作的。 安装完成后&#xff0c;下…

每日一题——LeetCode942

方法一 个人方法&#xff1a; 找规律&#xff0c;碰到I优先放最小的数&#xff0c;碰到D优先放最大的数&#xff0c;将0-n按照从小到大的顺序放入数组保存&#xff0c;碰到I就从数组前面取值&#xff0c;碰到D就从数组后面取值 var diStringMatch function(s) {var arr[],pe…

python gui programming cook,python gui视频教程

大家好&#xff0c;给大家分享一下python gui programming cook&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; Source code download: 本文相关源码 前言 上一节我们实现了明细窗体GUI的搭建&#xff0c;并且设置了查看、修改、添加三种不…

C语言实例_stdlib.h库函数功能及其用法详解

一、前言 C语言作为一种高效、灵活的编程语言&#xff0c;标准库的使用对于开发人员来说是不可或缺的。其中&#xff0c;stdlib.h是C语言中一个重要的标准库头文件&#xff0c;提供了许多常用的函数和工具&#xff0c;以便开发人员能够更加便捷地进行内存管理、字符串处理、随…

大创项目推荐 深度学习中文汉字识别

文章目录 0 前言1 数据集合2 网络构建3 模型训练4 模型性能评估5 文字预测6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习中文汉字识别 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xf…

OCP NVME SSD规范解读-4.NVMe IO命令-1

针对NVMe-IO-1到NVMe-IO-14的解读如下&#xff1a; NVMe-IO-1&#xff1a; 设备应支持所有必需的NVMe I/O命令。这是设备能够进行基本数据读写操作的基础要求。NVMe I/O命令包括读、写、删除、擦除等操作&#xff0c;这些是存储设备的核心功能。 NVMe-IO-2&#xff1a; 设备应…

JavaOOP篇----第二十五篇

系列文章目录 文章目录 系列文章目录前言一、一个”.java”源文件中是否可以包含多个类(不是内部类)?有什么限制?二、AnonymousInnerClass(匿名内部类)是否可以继承其它类?是否可以实现接口?三、内部类可以引用它的包含类(外部类)的成员吗?有没有什么限制?四、Java 中…

[计算机提升] Windows系统软件:管理类

3.6 系统软件&#xff1a;管理类 3.6.1 运行 通过运行程序&#xff0c;在打开输入框中输入名称&#xff0c;按下回车后可以打开相应的程序、文件夹、文档或Internet资源&#xff1a; 3.6.2 命令提示符&#xff1a;cmd 在Windows系统中&#xff0c;cmd是指"命令提示符…

nacos入门篇001-安装与启动

1、下载zip包 我这里下载的是版本2.2.0 Nacos 快速开始 2、修改配置文件 2.1集群模式修改成单例模式 vi startup.sh 2.2 修改数据库配置信息 3、初始化数据库 3.1 创建db名称&#xff1a;db_nacos 3.2 执行mysql-schema.sql 3.3 执行完截图&#xff1a; 4、运行脚本启动 …

听GPT 讲Rust源代码--src/tools(34)

File: rust/src/tools/clippy/clippy_lints/src/collection_is_never_read.rs 文件"collection_is_never_read.rs"位于Rust源代码中的clippy_lints工具中&#xff0c;其作用是检查在集合类型&#xff08;如Vec、HashMap等&#xff09;的实例上执行的操作是否被忽略了…

LT8612UX-HDMI2.0 to HDMI2.0 and VGA Converter with Audio,支持三通道视频DAC

HDMI2.0 to HDMI2.0 and VGA Converter with Audio 1. 描述 LT8612UX是一个HDMI到HDMI和vga转换器&#xff0c;它将HDMI2.0数据流转换为HDMI2.0信号和模拟RGB信号。 它还输出8通道I2S和SPDIF信号&#xff0c;使高质量的7.1通道音频。 LT8612UX支持符合HDMI2.0/ 1.4规范的…

ubuntu python播放MP3,wav音频和录音

目录 一.利用pygame&#xff08;略显麻烦&#xff0c;有时候播放不太正常&#xff09;1.安装依赖库2.代码 二.利用mpg123&#xff08;简洁方便&#xff0c;但仅争对mp3&#xff09;1.安装依赖库2.代码 三.利用sox&#xff08;简单方便&#xff0c;支持的文件格式多&#xff09;…