DBO优化SVM的电力负荷预测,附MATLAB代码

今天为大家带来一期基于DBO-SVM的电力负荷预测。

原理详解

文章对支持向量机(SVM)的两个参数进行优化,分别是:惩罚系数c和 gamma。

其中,惩罚系数c表示对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。c越小,容易欠拟合。c过大或过小,泛化能力都会变差。

gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

本文所选SVM是从官网下载的libsvm-3.3版本,作者已编译好,大家可以直接运行。如果想自行编译的童鞋可以从网站下载:https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html,编译步骤可以参考https://blog.csdn.net/qq_42457960/article/details/109275227

采用蜣螂优化SVM,参数设置范围分别是:

惩罚系数c[0.001, 1000]
gamma[2^-8,2^8]

将DBO种群数设置为:30,迭代次数设置为60。


数据准备

对电力负荷数据进行处理

本次数据包含负荷值,温度,湿度,风速,压强,降水量,能见度,水汽压和体感温度,部分数据截图如下:

5affd61c38e621decacd7fcea627a74b.png

选取1200个样本作为训练集,每个样本组成为:当天24个小时的全部数据,因此训练集的输入数据大小为1200*216,其中216=24*9,24代表24个小时,9代表9个特征。训练集的输出数据大小为:1200*1。1代表未来一小时的负荷值。

选取100个样本作为测试集,同理,测试集的输入数据大小为100*216,训练集的输出数据大小为:100*1。

结果展示

采用SVM对电力负荷数据进行训练和预测

SVM的预测结果如下:

26f6f468638d19bb5239e0bec261aa1a.png

可以看到,未优化的SVM预测效果还是不错的,但是仍然有改进空间。

DBO-SVM模型的预测效果如下:

5f6c35fdba021a081e87fa2b2a42887d.png

误差对比图如下:

21211ac8f2f5f88ea6888641fee155e0.png

DBO-SVM的进化曲线:

094a53e040c9799867e6d329e84d3f55.png

可以看到DBO-SVM预测效果有了明显提升,DBO-SVM的MSE误差为0.79022,相比于未优化SVM的17.2023有了很大提升!

DBO-SVM的回归拟合图:

9c3ae215e432dfd11851f115cd7467b1.png

误差直方图:

b00571746436990a42e6705d3b7985a7.png

4cf0c992edb5e92a79e8f7d3cd2ee489.png

750a1d28232a8c15f4ca057d253c1368.png

部分代码

%% 初始化DBO参数
pop=30;   %初始种群规模
maxgen=60;   %最大进化代数
lb = [10^-3, 2^-8];
ub = [10^3, 2^8];
dim = 2;
[fMin,bestX,Convergence_curve ] = DBOforSVM(pop, maxgen,lb,ub,dim,inputn,output_train,inputn_test,output_test);
bestc=bestX(1);
bestg=bestX(2);
disp(['最佳参数为:',num2str(bestX)])
cmd = [' -t 2',' -c ',num2str(bestc),' -g ',num2str(bestg),' -s 3 -h 0 -q'];
mode1= libsvmtrain(output_train,inputn,cmd);
[test_simu1,~,~]= libsvmpredict(output_test,inputn_test,mode1);
mse1=mse(output_test,test_simu1); 
error1 = output_test - test_simu1;%% 绘制进化曲线
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('DBO-SVM的MSE进化曲线')
% 绘制误差对比图
figure
plot(abs(error1),'-*')
hold on
plot(abs(error0),'-or')
title(['SVM的MSE:',num2str(mse0),newline,'DBO-SVM的MSE:',num2str(mse1)])
xlabel('预测样本','fontsize',12)
ylabel('误差绝对值','fontsize',12)
legend('DBO-SVM预测器预测','SVM预测器预测')
% 绘制结果对比曲线图
figure
plot(output_test,'b-.')
hold on
plot(test_simu0,'r')
hold on
plot(test_simu1,'g')
hold off
grid on
title(['结果对比曲线图'])
legend('真实值','SVM预测值','DBO-SVM预测值')
xlabel('样本编号')
ylabel('负荷值')%% 回归图与误差直方图
figure;
plotregression(test_simu1,output_test,['优化后回归图']);
set(gcf,'color','w')figure;
ploterrhist(test_simu1-output_test,['误差直方图']);
set(gcf,'color','w')%% 打印出评价指标
% 预测结果评价
ae= abs(test_simu1-output_test);
rmse = (mean(ae.^2)).^0.5;
mse = mean(ae.^2);
mae = mean(ae);
mape = mean(ae./test_simu1);
[R,r] = corr(output_test,test_simu1);
R2 = 1 - norm(output_test -  test_simu1)^2 / norm(output_test-mean(output_test ))^2;
disp('预测结果评价指标:')
disp(['RMSE = ', num2str(rmse)])
disp(['MSE  = ', num2str(mse)])
disp(['MAE  = ', num2str(mae)])
disp(['MAPE = ', num2str(mape)])
disp(['决定系数R^2为:',num2str(R2)])

代码获取

完整代码获取,点击下方卡片,后台回复关键词:

DBOSVM

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/58489.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pytorch-以数字识别更好地入门深度学习

目录 一、数据介绍 二、下载数据 三、可视化数据 四、模型构建 五、模型训练 六、模型预测 一、数据介绍 MNIST数据集是深度学习入门的经典案例,因为它具有以下优点: 1. 数据量小,计算速度快。MNIST数据集包含60000个训练样本和1000…

网络编程 http 相关基础概念

文章目录 表单是什么http请求是什么http请求的结构和说明关于http方法 GET和POST区别http常见状态码http响应http 请求是无状态的含义html是什么 (前端内容,了解即可)html 常见标签 (前端内容,了解即可)关于…

App卡帧与BlockCanary

作者:图个喜庆 一,前言 app卡帧一直是性能优化的一个重要方面,虽然现在手机硬件性能越来越高,明显的卡帧现象越来越少,但是了解卡帧相关的知识还是非常有必要的。 本文分两部分从app卡帧的原理出发,讨论屏…

Mainline Linux 和 U-Boot编译

By Toradex胡珊逢 Toradex 自从 Linux BSP v6 开始在使用 32位处理器的 Arm 模块如 iMX6、iMX6ULL、iMX7 上提供 mainline/upstream kernel ,部分 64位处理器模块如 Verdin iMX8M Mini/Plus 也提供实验性支持。文章将以季度发布版本 Linux BSP V6.3.0 为例介绍如何下…

detour编译问题及导入visual studio

Detours是经过微软认证的一个开源Hook库,Detours在GitHub上,网址为 https://github.com/Microsoft/Detours 注意版本不一样的话也是会出问题的,因为我之前是vs2022的所以之前的detours.lib不能使用,必须用对应版本的x64 Native To…

python的安装(推荐)

torch安装与卸载推荐链接1推荐链接2 推荐链接3 安装pytorch步骤推荐链接 python关键字:

4 hadoop集群配置案例

3&#xff09;配置集群 &#xff08;1&#xff09;核心配置文件&#xff0c;core-site.xml cd $HADOOP_HOME/etc/hadoopvim core-site.xml文件内容如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <?xml-stylesheet type"text…

数据库概述

目录 数据库 数据库的基本概念 数据 表 数据库 数据库管理系统 数据库系统 DBMS的主要功能 DBMS的工作模式 ​编辑 数据库的发展 数据库类型 关系数据库 关系数据库的构成 非关系数据库 非关系型数据库的优点 关系型数据库与非关系型数据库的区别 数据库 数据库…

Flink流批一体计算(16):PyFlink DataStream API

目录 概述 Pipeline Dataflow 代码示例WorldCount.py 执行脚本WorldCount.py 概述 Apache Flink 提供了 DataStream API&#xff0c;用于构建健壮的、有状态的流式应用程序。它提供了对状态和时间细粒度控制&#xff0c;从而允许实现高级事件驱动系统。 用户实现的Flink程…

Ubuntu安装RabbitMQ

一、安装 更新系统软件包列表&#xff1a; sudo apt update安装RabbitMQ的依赖组件和GPG密钥&#xff1a; sudo apt install -y curl gnupg curl -fsSL https://github.com/rabbitmq/signing-keys/releases/download/2.0/rabbitmq-release-signing-key.asc | sudo gpg --dearmo…

暴力递归转动态规划(二)

上一篇已经简单的介绍了暴力递归如何转动态规划&#xff0c;如果在暴力递归的过程中发现子过程中有重复解的情况&#xff0c;则证明这个暴力递归可以转化成动态规划。 这篇帖子会继续暴力递归转化动态规划的练习&#xff0c;这道题有点难度。 题目 给定一个整型数组arr[]&…

用心维护好电脑,提高学习工作效率

文章目录 一、我的电脑1.1 如何查看自己的电脑硬件信息呢&#xff1f; 二、电脑标准保养步骤和建议2.1 保持清洁2.2 定期升级系统和软件2.3 安全防护2.4 清理磁盘空间2.5 备份重要数据2.6 优化启动项2.7 散热管理2.8 硬件维护2.9 电源管理2.10 注意下载和安装2.11 定期维护 三、…

C++语法基础

这里写目录标题 基础语法第一个程序变量常量的定义关键字标识符命名 &#xff08;变量命名&#xff09;sizeof的使用实型&#xff08;浮点型&#xff09;字符型转义字符字符串的定义 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 基础语法 第一个程序 …

用 PHP 和 JavaScript 显示地球卫星照片

向日葵 8 号气象卫星是日本宇宙航空研究开发机构设计制造的向日葵系列卫星之一&#xff0c;重约 3500 公斤&#xff0c;设计寿命 15 年以上。该卫星于 2014 年 10 月 7 日由 H2A 火箭搭载发射成功&#xff0c;主要用于监测暴雨云团、台风动向以及持续喷发活动的火山等防灾领域。…

hadoop 学习:mapreduce 入门案例一:WordCount 统计一个文本中单词的个数

一 需求 这个案例的需求很简单 现在这里有一个文本wordcount.txt&#xff0c;内容如下 现要求你使用 mapreduce 框架统计每个单词的出现个数 这样一个案例虽然简单但可以让新学习大数据的同学熟悉 mapreduce 框架 二 准备工作 &#xff08;1&#xff09;创建一个 maven 工…

Win11共享文件,能发现主机但无法访问,提示找不到网络路径

加密长度选择如下&#xff1a; 参考以下链接&#xff1a; Redirectinghttps://answers.microsoft.com/zh-hans/windows/forum/all/win11%E8%AE%BE%E7%BD%AE%E6%96%87%E4%BB%B6%E5%A4%B9/554343a9-d963-449a-aa59-ce1e6f7c8982?tabAllReplies#tabs

STM32驱动SD卡(SPI)方式

外观 代码(免费分享) 接线 5V供电 CS接PA3 剩下如图按照硬件SPI1接线 注意事项 使用杜邦线接线非常不稳定&#xff01;&#xff01;&#xff01; 使用杜邦线接线非常不稳定&#xff01;&#xff01;&#xff01; 使用杜邦线接线非常不稳定&#xff01;&#xff01;&#…

图的存储:十字链表,邻接多重表

1.十字链表存储有向图 1.存储方式 分为顶点结点和弧结点两种结构体 顶点结点使用数组顺序存储&#xff0c;结构体包括&#xff1a;数据域&#xff0c;作为顶点弧头的第一条弧&#xff0c;作为顶点弧尾的第一条弧。 弧结点&#xff0c;结构体包括&#xff1a;弧头相同的下一…

机械臂+2d相机实现复合机器人定位抓取

硬件参数 机械臂&#xff1a;艾利特 相机&#xff1a;海康相机 2d识别库&#xff1a;lindmod&#xff0c;github可以搜到 光源&#xff1a;磐鑫光源 软件参数 系统&#xff1a;windows / Linux 开发平台&#xff1a;Qt 开发语言&#xff1a;C 开发视觉库&#xff1a;OpenCV …