[足式机器人]Part4 南科大高等机器人控制课 CH12 Robotic Motion Control

本文仅供学习使用
本文参考:
B站:CLEAR_LAB
笔者带更新-运动学
课程主讲教师:
Prof. Wei Zhang
课程链接 :
https://www.wzhanglab.site/teaching/mee-5114-advanced-control-for-robotics/

南科大高等机器人控制课 Ch12 Robotic Motion Control

  • 1. Basic Linear Control Design
    • 1.1 Error Response
    • 1.2 Standard Second-Order Systems
    • 1.3 Second-Order Response Characteristics
    • 1.4 State-Space Controller Design
  • 2. Motion Control Problems
    • 2.1 Robotic Motion Control Problem
    • 2.2 Variations in Robot Motion Control
  • 3. Motion Control with Velocity/Acceleration as Input
    • 3.1 Velocity-Resolved Control
      • 3.2.1 Velocity-Resolved Joint Space Control
      • 3.2.2 Velocity-Resolved Task Space Control
    • 3.2 Acceleration-Resolved Control
      • 3.2.1 Acceleration-Resolved Control in Joint Space
      • 3.2.2 Acceleration-Resolved Control in Task Space
  • 4. Motion Control with Torque as Input and Task Space Inverse Dynamics
    • 4.1 Recall Properties of Robot Dynamics
    • 4.2 Computed Torque Control
    • 4.3 Inverse Dynamics Control


机器人——运动能力、计算能力、感知决策能力 的机电系统

1. Basic Linear Control Design

1.1 Error Response

在这里插入图片描述
Steady-state error : e s s = lim ⁡ t → ∞ θ e ( t ) e_{\mathrm{ss}}=\underset{t\rightarrow \infty}{\lim}\theta _{\mathrm{e}}\left( t \right) ess=tlimθe(t)

Precent overshoot : P.O.

Rise time / Peak time :

Settling time : T s T_{\mathrm{s}} Ts

1.2 Standard Second-Order Systems

详细推导见 : (待补充)
在这里插入图片描述

1.3 Second-Order Response Characteristics

详细推导见 : (待补充)
在这里插入图片描述

1.4 State-Space Controller Design

在这里插入图片描述

  • Eigenvalue assignment : Find control gain K K K such that e i g ( A − B K ) = e i g d e s i r e d eig\left( A-BK \right) =eig_{\mathrm{desired}} eig(ABK)=eigdesired
  • Solvability : We can always find such K K K if ( A , B ) \left( A,B \right) (A,B) is controllable ( r a n k ( m c ) = n rank\left( m_{\mathrm{c}} \right) =n rank(mc)=n)
  • How to choose desired eigs? —— refer to 2nd-order system
    specification (P.O. T s T_{\mathrm{s}} Ts T p T_{\mathrm{p}} Tp) ⇒ a r t \overset{art}{\Rightarrow} art dominant poles + other poles ⇒ \Rightarrow e i g d e s i r e d eig_{\mathrm{desired}} eigdesired ⇒ s c i e n c e \overset{science}{\Rightarrow} science K K K

2. Motion Control Problems

2.1 Robotic Motion Control Problem

Dynamic equation of fully-acuated robot (with external force) : { τ = M ( q ) q ¨ + c ( q , q ˙ ) q ˙ + g ( q ) + J T ( q ) F e x t y = h ( q ) \begin{cases} \tau =M\left( q \right) \ddot{q}+c\left( q,\dot{q} \right) \dot{q}+g\left( q \right) +J^{\mathrm{T}}\left( q \right) \mathcal{F} _{\mathrm{ext}}\\ y=h\left( q \right)\\ \end{cases} {τ=M(q)q¨+c(q,q˙)q˙+g(q)+JT(q)Fexty=h(q)
q ∈ R n q\in \mathbb{R} ^n qRn : joint positions (generalized coordinate)
τ ∈ R n \tau \in \mathbb{R} ^n τRn : joint torque (generalized input)
y y y : output (variable to be controlled) —— can be any func of q q q , e.g. y = q , y = [ T ( q ) ] ∈ S E ( 3 ) y=q,y=\left[ T\left( q \right) \right] \in SE\left( 3 \right) y=q,y=[T(q)]SE(3)

  • Motion Control Problems : Let y y y track given reference y d y_{\mathrm{d}} yd
    在这里插入图片描述
    often times q d q_{\mathrm{d}} qd is given by planner represented by polynomials , so that q ˙ d , q ¨ d \dot{q}_{\mathrm{d}},\ddot{q}_{\mathrm{d}} q˙d,q¨d can be easily obtained

2.2 Variations in Robot Motion Control

  • Joint-space vs. Task-space control
    Joint-space : y ( t ) = q ( t ) y\left( t \right) =q\left( t \right) y(t)=q(t) , i.e. , want q ( t ) q\left( t \right) q(t) to track a given q d ( t ) q_{\mathrm{d}}\left( t \right) qd(t) joint reference
    Task-space : y ( t ) = [ T ( q ( t ) ) ] ∈ S E ( 3 ) y\left( t \right) =\left[ T\left( q\left( t \right) \right) \right] \in SE\left( 3 \right) y(t)=[T(q(t))]SE(3) denotes end-effector pose/configuration, we want y ( t ) y\left( t \right) y(t) to track y d ( t ) y_{\mathrm{d}}\left( t \right) yd(t)

  • Actuation models:
    Velocity source : u = q ˙ u=\dot{q} u=q˙ —— directly control velocity
    Acceleration sources : u = q ¨ u=\ddot{q} u=q¨ —— directly control acceleration
    Torque sources : u = τ u=\tau u=τ —— directly control torque
    在这里插入图片描述
    Acutation model make sense if for ant given u u u , the joint velocity q ˙ \dot{q} q˙ can immediatly reach u u u

Motion Control Problem
Design u u u to set y y y track desired reference y d y_{\mathrm{d}} yd

  • Depending on our assumption on u / y u/y u/y
    output y y y —— 6大基本问题
    y ↔ q ∈ R n y\leftrightarrow q\in \mathbb{R} ^n yqRn - joint variable : Joint space motion control (Velocity-resolved Joint-space control ; Acceleration-resolved Joint-space control ; Torque-resolved Joint-space control ; )
    y ↔ [ T ( q ) ] ∈ S E ( 3 ) y\leftrightarrow \left[ T\left( q \right) \right] \in SE\left( 3 \right) y[T(q)]SE(3) or y = f ( q ) y=f\left( q \right) y=f(q) - task space variable - e.g. origin of end-effector frame : Task space motion control (Velocity-resolved Task-space ; Acceleration-resolved Task-space ; Torque-resolved Task-space ; )

Linear control / feedback lineariazation

3. Motion Control with Velocity/Acceleration as Input

3.1 Velocity-Resolved Control

Each joints’ velocity q ˙ i \dot{q}_{\mathrm{i}} q˙i can be directly controlled

Good approximation for hydraulic actuators

Common approxiamtion of the outer-loop control for the Inner / outer loop control setup
在这里插入图片描述

3.2.1 Velocity-Resolved Joint Space Control

Joint-space ‘dynamics’ : single integrator q ˙ = u \dot{q}=u q˙=u

Joint-space tracking becomes standard linear tracking control problem : u = q ˙ d + K 0 q ¨ ⇒ q ~ ˙ + K 0 q ¨ = 0 u=\dot{q}_{\mathrm{d}}+K_0\ddot{q}\Rightarrow \dot{\tilde{q}}+K_0\ddot{q}=0 u=q˙d+K0q¨q~˙+K0q¨=0 , where q ~ = q d − q \tilde{q}=q_{\mathrm{d}}-q q~=qdq is the joint position error. —— stable if e i g ( − K 0 ) ∈ O L H P eig\left( -K_0 \right) \in OLHP eig(K0)OLHP

The error dynamic is stable if − K 0 -K_0 K0 is Hurwitz

3.2.2 Velocity-Resolved Task Space Control

For task space control , y = [ T ( q ) ] y=\left[ T\left( q \right) \right] y=[T(q)] needs to track y d y_{\mathrm{d}} yd , y y y can be ant function of q q q, in particular , it can represents position and/or the end-effector frame

Taking derivatives of y y y , and letting u = q ˙ u=\dot{q} u=q˙ , we have : y ˙ = J a ( q ) u \dot{y}=J_{\mathrm{a}}\left( q \right) u y˙=Ja(q)u
Note that q q q is function of y y y through inverse kinematics ( q = I K ( y ) q=IK\left( y \right) q=IK(y))
So the above dynamics can be written in terms of y y y and u u u only. The detailed form can be quite complex in general y ˙ = J a ( I K ( y ) ) u \dot{y}=J_{\mathrm{a}}\left( IK\left( y \right) \right) u y˙=Ja(IK(y))u

  1. Let v y v_{\mathrm{y}} vy be virtual control y ˙ = v y \dot{y}=v_{\mathrm{y}} y˙=vy design v y v_{\mathrm{y}} vy to track y d y_{\mathrm{d}} yd (same as above)
  2. Find actual control u u u such that J a ( I K ( y ) ) u ≈ v y J_{\mathrm{a}}\left( IK\left( y \right) \right) u\approx v_{\mathrm{y}} Ja(IK(y))uvy

在这里插入图片描述
在这里插入图片描述
We can design outer-loop controller as if we can directly control y ˙ \dot{y} y˙
y ˙ = v y = y ˙ d + K ( y d − y ) ⟹ p l u g i n y ˙ = v y y ~ ˙ = − K y ~ \dot{y}=v_{\mathrm{y}}=\dot{y}_{\mathrm{d}}+K\left( y_{\mathrm{d}}-y \right) \overset{plug\,\,in\,\,\dot{y}=v_{\mathrm{y}}\,\,}{\Longrightarrow}\dot{\tilde{y}}=-K\tilde{y} y˙=vy=y˙d+K(ydy)pluginy˙=vyy~˙=Ky~
We can select K K K such that − K -K K is Hurtwiz , object of inner loop : determine u = q ˙ u=\dot{q} u=q˙ such that y ˙ ≈ v y \dot{y}\approx v_{\mathrm{y}} y˙vy

System(2) is nonlinear system , a commeon way is to break it into inner-outer loop , where the outer loop directly control velocity of y y y, and the inner loop tries to find u u u to generate desired task space velocity

Outer loop : y ˙ = v y \dot{y}=v_{\mathrm{y}} y˙=vy , where control v y = y ˙ d + K 0 y ~ v_{\mathrm{y}}=\dot{y}_{\mathrm{d}}+K_0\tilde{y} vy=y˙d+K0y~ , resulting in task-space closed-loop error dynamics: y ~ ˙ + K 0 y ~ = 0 \dot{\tilde{y}}+K_0\tilde{y}=0 y~˙+K0y~=0

Above task space tracking relies on a fictitious control v y v_{\mathrm{y}} vy , i.e. , it assumes y ˙ \dot{y} y˙ can be arbitrarily controlled by selecting appropriate u = q ˙ u=\dot{q} u=q˙ , which is true if J a J_{\mathrm{a}} Ja is full-row rank

Inner loop : Given v y v_{\mathrm{y}} vy from the outer loop, find the joint velocity control by solving
{ min ⁡ u ∥ v y − J a ( q ) u ∥ 2 + r e g u l a r i z a t i o n t e r m s u b j . t o : C o n s t r a i n t s o n u , e . g . { q ˙ min ⁡ ⩽ u ⩽ q ˙ max ⁡ q min ⁡ ⩽ q + u Δ t ⩽ q max ⁡ \begin{cases} \min _{\mathrm{u}}\left\| v_{\mathrm{y}}-J_{\mathrm{a}}\left( q \right) u \right\| ^2+regularization\,\,term\\ subj.to\,\,: Constraints\,\,on\,\,u\,\,, e.g.\begin{cases} \dot{q}_{\min}\leqslant u\leqslant \dot{q}_{\max}\\ q_{\min}\leqslant q+u\varDelta t\leqslant q_{\max}\\ \end{cases}\\ \end{cases} minuvyJa(q)u2+regularizationtermsubj.to:Constraintsonu,e.g.{q˙minuq˙maxqminq+uΔtqmax
Inner-loop is essentially a differential IK controller
One can also use the pseudo-inverse control u = J a † v y u={J_{\mathrm{a}}}^{\dagger}v_{\mathrm{y}} u=Javy

3.2 Acceleration-Resolved Control

3.2.1 Acceleration-Resolved Control in Joint Space

Joint acceleration cna be directly controlled , resulting in double-integrator dynamics q ¨ = u \ddot{q}=u q¨=u . Given q d q_{\mathrm{d}} qd reference , we want q → q d q\rightarrow q_{\mathrm{d}} qqd (double integartor)

Joint-space tracking becomes standard linear tracking control problem for double-integrator system:
u = q ¨ d + K 1 q ~ ˙ + K 0 q ~ = 0 , q ~ ∈ R n u=\ddot{q}_{\mathrm{d}}+K_1\dot{\tilde{q}}+K_0\tilde{q}=0,\tilde{q}\in \mathbb{R} ^n u=q¨d+K1q~˙+K0q~=0,q~Rn
—— PD control , closed-loop system , where q ~ = q d − q \tilde{q}=q_{\mathrm{d}}-q q~=qdq is the joint position error.

Stablility condition : Let x = [ q ~ q ~ ˙ ] ∈ R 2 n x=\left[ \begin{array}{c} \tilde{q}\\ \dot{\tilde{q}}\\ \end{array} \right] \in \mathbb{R} ^{2n} x=[q~q~˙]R2n , [ 0 E − K 0 − K 1 ] [ q ~ q ~ ˙ ] , x ˙ = A x \left[ \begin{matrix} 0& E\\ -K_0& -K_1\\ \end{matrix} \right] \left[ \begin{array}{c} \tilde{q}\\ \dot{\tilde{q}}\\ \end{array} \right] ,\dot{x}=Ax [0K0EK1][q~q~˙],x˙=Ax
closed-loop system is stable . if e i g ( A ) ∈ O L H P eig\left( A \right) \in OLHP eig(A)OLHP or A A A is Hurwitz

3.2.2 Acceleration-Resolved Control in Task Space

For task space control , y = [ T ( q ) ] ∈ S E ( 3 ) y=\left[ T\left( q \right) \right] \in SE\left( 3 \right) y=[T(q)]SE(3) needs to track y d y_{\mathrm{d}} yd
在这里插入图片描述
Note : For y = f ( q ) y=f\left( q \right) y=f(q) y ˙ = J a ( q ) q ˙ \dot{y}=J_{\mathrm{a}}\left( q \right) \dot{q} y˙=Ja(q)q˙ and y ¨ = J ˙ a ( q ) q ˙ + J a ( q ) q ¨ ⇒ y ¨ = J ˙ a ( q ) q ˙ + J a ( q ) u ⇐ \ddot{y}=\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}+J_{\mathrm{a}}\left( q \right) \ddot{q}\Rightarrow \ddot{y}=\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}+J_{\mathrm{a}}\left( q \right) u\Leftarrow y¨=J˙a(q)q˙+Ja(q)q¨y¨=J˙a(q)q˙+Ja(q)u nonlinear dynamics

Following the same inner-outer loop strategy deiscussed before . Introduce virtual control , a y a_{\mathrm{y}} ay such that y ¨ = a y \ddot{y}=a_{\mathrm{y}} y¨=ay , we can design controller for a y a_{\mathrm{y}} ay to let y → y d y\rightarrow y_{\mathrm{d}} yyd

Outer-loop dynamics : y ¨ = a y \ddot{y}=a_{\mathrm{y}} y¨=ay , with a y a_{\mathrm{y}} ay being the outer-loop control input a y = y ¨ d + K 1 y ~ ˙ + K 0 y ~ ⇒ y ~ ¨ + K 1 y ~ ˙ + K 0 y ~ = 0 a_{\mathrm{y}}=\ddot{y}_{\mathrm{d}}+K_1\dot{\tilde{y}}+K_0\tilde{y}\Rightarrow \ddot{\tilde{y}}+K_1\dot{\tilde{y}}+K_0\tilde{y}=0 ay=y¨d+K1y~˙+K0y~y~¨+K1y~˙+K0y~=0
在这里插入图片描述
—— PD control , stable if [ 0 E − K 0 − K 1 ] \left[ \begin{matrix} 0& E\\ -K_0& -K_1\\ \end{matrix} \right] [0K0EK1] Hurwitz

Inner-loop : given a y a_{\mathrm{y}} ay from outer loop , find the “best” joint acceleration:
{ min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a ( q ) u ∥ 2 + r e g u l a r i z a t i o n t e r m s u b j . t o : C o n s t r a i n t s o n u \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}\left( q \right) u \right\| ^2+regularization\,\,term\\ subj.to\,\,: Constraints\,\,on\,\,u\,\,\\ \end{cases} minu ayJ˙a(q)q˙Ja(q)u 2+regularizationtermsubj.to:Constraintsonu
—— u u u : optimization variable , J ˙ a ( q ) , q ˙ , q \dot{J}_{\mathrm{a}}\left( q \right) ,\dot{q},q J˙a(q),q˙,q - known
{ A c c : q ¨ min ⁡ ⩽ u ⩽ q ¨ max ⁡ V e l : q ˙ min ⁡ ⩽ q + u Δ t ⩽ q ˙ max ⁡ \begin{cases} Acc\,\,: \ddot{q}_{\min}\leqslant u\leqslant \ddot{q}_{\max}\\ Vel\,\,: \dot{q}_{\min}\leqslant q+u\varDelta t\leqslant \dot{q}_{\max}\\ \end{cases} {Acc:q¨minuq¨maxVel:q˙minq+uΔtq˙max

Mathematically , the above problem is the same as the Differential IK problem

At any given time , q ˙ , q \dot{q},q q˙,q can be measured , and then y , y ˙ y,\dot{y} y,y˙ can be computed, which allows us to compute outer loop control a y a_{\mathrm{y}} ay and inner loop control u u u

4. Motion Control with Torque as Input and Task Space Inverse Dynamics

4.1 Recall Properties of Robot Dynamics

For fully actuated robot :
τ = M ( q ) q ¨ + C ( q , q ˙ ) q ˙ + g ( q ) \tau =M\left( q \right) \ddot{q}+C\left( q,\dot{q} \right) \dot{q}+g\left( q \right) τ=M(q)q¨+C(q,q˙)q˙+g(q)
M ( q ) = ∑ J i T [ I i ] 6 × 6 J i ∈ R n × n M\left( q \right) =\sum{{J_{\mathrm{i}}}^{\mathrm{T}}\left[ \mathcal{I} _{\mathrm{i}} \right] _{6\times 6}J_{\mathrm{i}}}\in \mathbb{R} ^{n\times n} M(q)=JiT[Ii]6×6JiRn×n

There are many valid difinitions of C ( q , q ˙ ) C\left( q,\dot{q} \right) C(q,q˙) , typical choice for C C C include:
C i j = ∑ k 1 2 ( ∂ M i j ∂ q k + ∂ M i k ∂ q j − ∂ M j k ∂ q i ) C_{\mathrm{ij}}=\sum_k^{}{\frac{1}{2}\left( \frac{\partial M_{\mathrm{ij}}}{\partial q_{\mathrm{k}}}+\frac{\partial M_{\mathrm{ik}}}{\partial q_{\mathrm{j}}}-\frac{\partial M_{\mathrm{jk}}}{\partial q_{\mathrm{i}}} \right)} Cij=k21(qkMij+qjMikqiMjk)
For the above defined C C C , we have M ˙ − 2 C \dot{M}-2C M˙2C is skew symmetric
For all valid C C C, we have q ˙ T [ M ˙ − 2 C ] q ˙ = 0 \dot{q}^{\mathrm{T}}\left[ \dot{M}-2C \right] \dot{q}=0 q˙T[M˙2C]q˙=0
These properties play improtant role in designing motion controller

4.2 Computed Torque Control

For fully-actuated robot, we have M ( q ) ≻ 0 M\left( q \right) \succ 0 M(q)0 and q ¨ \ddot{q} q¨ can be arbitrarily specified through torque control u = τ u=\tau u=τ
q ¨ = M − 1 ( q ) [ u − C ( q , q ˙ ) q ˙ − g ( q ) ] \ddot{q}=M^{-1}\left( q \right) \left[ u-C\left( q,\dot{q} \right) \dot{q}-g\left( q \right) \right] q¨=M1(q)[uC(q,q˙)q˙g(q)]

we know how to design controller if u = q ¨ u=\ddot{q} u=q¨
在这里插入图片描述
Thus , for fully-acuated robot, torque controlled case can be reduced to the acceleration-resolved case

Outer loop: q ¨ = a q \ddot{q}=a_{\mathrm{q}} q¨=aq with joint acceleration as control input
a q = q ¨ + K 1 y ~ ˙ + K 0 y ~ ⇒ q ~ ¨ + K 1 q ~ ˙ + K 0 q ~ = 0 a_{\mathrm{q}}=\ddot{q}+K_1\dot{\tilde{y}}+K_0\tilde{y}\Rightarrow \ddot{\tilde{q}}+K_1\dot{\tilde{q}}+K_0\tilde{q}=0 aq=q¨+K1y~˙+K0y~q~¨+K1q~˙+K0q~=0

Inner loop : since M ( q ) M\left( q \right) M(q) is square and nonsingular , inner loop control u u u can be found analytically:
u = M ( q ) ( q ¨ d + K 1 q ~ ˙ + K 0 q ~ ) + C ( q , q ˙ ) q ˙ + g ( q ) u=M\left( q \right) \left( \ddot{q}_{\mathrm{d}}+K_1\dot{\tilde{q}}+K_0\tilde{q} \right) +C\left( q,\dot{q} \right) \dot{q}+g\left( q \right) u=M(q)(q¨d+K1q~˙+K0q~)+C(q,q˙)q˙+g(q)
在这里插入图片描述
The control law is a function of q , q ˙ q,\dot{q} q,q˙ and the reference q d q_{\mathrm{d}} qd. It is called computed-torque control.

The control law also relies on system model M , C , g M,C,g M,C,g if these model information are not accurate, the control will not perform well.
y = f ( q ) , y ¨ = J ˙ a ( q ) q ˙ + J a ( q ) M − 1 ( u − C − g ) y=f\left( q \right) ,\ddot{y}=\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}+J_{\mathrm{a}}\left( q \right) M^{-1}\left( u-C-g \right) y=f(q),y¨=J˙a(q)q˙+Ja(q)M1(uCg)
Idea easily extends to task space : y ˙ = J a ( q ) q ˙ \dot{y}=J_{\mathrm{a}}\left( q \right) \dot{q} y˙=Ja(q)q˙ and y ¨ = J ˙ a ( q ) q ˙ + J a ( q ) q ¨ \ddot{y}=\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}+J_{\mathrm{a}}\left( q \right) \ddot{q} y¨=J˙a(q)q˙+Ja(q)q¨ —— τ = u = τ , q ¨ = M − 1 [ u − C − g ] \tau =u=\tau ,\ddot{q}=M^{-1}\left[ u-C-g \right] τ=u=τ,q¨=M1[uCg]

Outer loop : y ¨ = a y \ddot{y}=a_{\mathrm{y}} y¨=ay and a y = y ¨ d + K 1 y ~ ˙ + K 0 y ~ a_{\mathrm{y}}=\ddot{y}_{\mathrm{d}}+K_1\dot{\tilde{y}}+K_0\tilde{y} ay=y¨d+K1y~˙+K0y~

Inner loop : sekect torque control u = τ u=\tau u=τ by
{ min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a ( q ) M − 1 ( u − C q ˙ − g ) ∥ 2 s u b j . t o : C o n s t r a i n t s \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}\left( q \right) M^{-1}\left( u-C\dot{q}-g \right) \right\| ^2\\ subj.to\,\,: Constraints\,\,\\ \end{cases} minu ayJ˙a(q)q˙Ja(q)M1(uCq˙g) 2subj.to:Constraints
If J a J_{\mathrm{a}} Jais invertible and we don’t impose additional torque constraints, analytical control law can be easily obtained —— u = ( J a ( q ) M − 1 ) − 1 ( a y − J ˙ a ( q ) q ˙ . . . ) u=\left( J_{\mathrm{a}}\left( q \right) M^{-1} \right) ^{-1}\left( a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}... \right) u=(Ja(q)M1)1(ayJ˙a(q)q˙...)

4.3 Inverse Dynamics Control

The computed-torque controller above is also canned inverse dynamics control

Forward dynamics : given τ \tau τ to compute q ¨ \ddot{q} q¨ —— from torque to motion

Inverse dynamics : given desired acceleration a q a_{\mathrm{q}} aq, we inverted it to find the required control by u = M a q + C q ˙ + g u=Ma_{\mathrm{q}}+C\dot{q}+g u=Maq+Cq˙+g

Task space case can be viewed as inverting the task space dynamics —— Given a y a_{\mathrm{y}} ay ( y y y task space) , find τ \tau τ such that y ¨ = a y \ddot{y}=a_{\mathrm{y}} y¨=ay

With recent advances in optimization , it is often preferred to do ID with quedratic program
在这里插入图片描述
For example, above equation can be viewed as task-space ID. We can incorporate torque contraints explicitly as follows:
{ min ⁡ u ∥ a y − J ˙ a ( q ) q ˙ − J a M − 1 ( u − C q ˙ − g ) ∥ 2 s u b j . t o : u − ⩽ u ⩽ u + \begin{cases} \min _{\mathrm{u}}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\left( q \right) \dot{q}-J_{\mathrm{a}}M^{-1}\left( u-C\dot{q}-g \right) \right\| ^2\\ subj.to\,\,: u_-\leqslant u\,\,\leqslant u_+\,\,\\ \end{cases} minu ayJ˙a(q)q˙JaM1(uCq˙g) 2subj.to:uuu+
optimization variable u ∈ R n u\in \mathbb{R} ^n uRn

This is equivalent to the following more popular form:
{ min ⁡ u , q ¨ ∥ a y − J ˙ a q ˙ − J a q ¨ ∥ 2 s u b j . t o : M q ¨ + C q ˙ + g = u u − ⩽ u ∈ R n ⩽ u + \begin{cases} \underset{u,\ddot{q}}{\min}\left\| a_{\mathrm{y}}-\dot{J}_{\mathrm{a}}\dot{q}-J_{\mathrm{a}}\ddot{q} \right\| ^2\\ subj.to\,\,: \begin{array}{c} M\ddot{q}+C\dot{q}+g=u\\ u_-\leqslant u\in \mathbb{R} ^n\,\,\leqslant u_+\,\,\\ \end{array}\\ \end{cases} u,q¨min ayJ˙aq˙Jaq¨ 2subj.to:Mq¨+Cq˙+g=uuuRnu+
optimization variable u , q ¨ ∈ R n u,\ddot{q}\in \mathbb{R} ^n u,q¨Rn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/584618.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据技术发展史

今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库系统BigTable。 你知道,搜索引擎主要就做两件事…

C语言 volatile关键字

volatile关键字介绍 volatile 是一个关键字,用于修饰变量,表示该变量是易变的,即可能在任何时候被意外地改变。在多线程编程中,当多个线程同时访问同一个变量时,由于线程之间的交互和优化,可能会导致变量的…

Python 实现 PDF 到 Word 文档的高效转换(DOC、DOCX)

PDF(Portable Document Format)已成为一种广泛使用的电子文档格式。PDF的主要优势是跨平台,可以在不同设备上呈现一致的外观。然而,当我们需要对文件内容进行编辑或修改,直接编辑PDF文件会非常困难,而且效果…

SimpleCG小游戏开发系列(2)--贪吃蛇

一、前言 在之前的C语言小游戏开发系列我们已经介绍了扫雷游戏的开发,本篇我们继续此系列第二篇,同样是比较简单但好玩的一个游戏--贪吃蛇。因为有了之前的游戏框架,我们只需要直接搬来原来的框架即可,可以省去不少活。 先看看游…

java数据结构与算法刷题-----LeetCode 680. 验证回文串 II

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 思路:双指针 详情见代码注释 class Solution {//贪心双指针&a…

什么是工厂方法模式,工厂方法模式解决了什么问题?

工厂方法模式是一种创建型设计模式,它定义了一个用于创建对象的接口,但将实际的实例化过程延迟到子类中。这样,客户端代码在不同的子类中实例化具体对象,而不是直接实例化具体类。工厂方法模式允许一个类的实例化延迟到其子类&…

Springboot实现登录注册

功能:1、实现用户的登录 2、实现用户的注册以及重名的判断 LoginControl: package com.example.demo.controls;import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.RequestMapping; imp…

CEC2017(Python):五种算法(HHO、RFO、OOA、PSO、GWO)求解CEC2017

一、5种算法简介 1、哈里斯鹰优化算法HHO 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem d…

resnet18

ResNet18的基本含义是,网络的基本架构是ResNet,网络的深度是18层。但是这里的网络深度指的是网络的权重层,也就是包括池化,激活,线性层。而不包括批量化归一层,池化层。 transforms.RandomCrop(32, pa…

RabbitMQ 核心概念(交换机、队列、路由键),队列类型等介绍

RabbitMQ 核心概念(交换机、队列、路由键),队列类型等介绍 RabbitMQ 是一个消息队列系统,它的核心概念包括交换机(Exchange)、队列(Queue)和路由键(Routing Key),它们一起…

Apache Flink连载(二十):Flink On Yarn运行 - Yarn Per-Job模式(弃用)

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1. 任务提交命令 2. 任务…

OCP NVME SSD规范解读-4.NVMe IO命令-2

NVMe-IO-3: 由于设备具有掉电保护功能(如Power Loss Protection,PLP),因此在以下情况下,性能不应降低: FUA(Force Unit Access):是计算机存储设备中的一种命…

Grafana告警发送至飞书配置指定at某人或所有人

1.问题描述 通过webhook向飞书机器人发送消息,根据飞书机器人官方文档,始终无法指定某个人或者所有人通知,后来发现是文档参数有问题。 文档地址:https://open.feishu.cn/document/client-docs/bot-v3/add-custom-bot 官方文档给…

谷达冠楠:抖店怎么运营提升销量

随着电商行业的快速发展,抖店作为抖音平台上的一种新型电商模式,越来越受到商家和消费者的青睐。然而,如何在众多的抖店中脱颖而出,提升销量呢?本文将从以下几个方面为大家分享一些运营技巧。 选品策略:选对产品是提升…

day3双指针

输入一字符串&#xff0c;然后将该字符串中的单词分割开来 #include <iostream> #include <string.h> using namespace std; int main() {char str[1000];gets(str);int nstrlen(str);for(int i0;i<n;i){int ji;while(str[j]! &&j<n) j;for(int ki;k…

Gooxi受邀出席2023松山湖软件和信息服务业高质量发展大会

为推动粤港澳大湾区的软件和先进制造产业的融合发展&#xff0c;“2023松山湖软件和信息服务业高质量发展大会”于今日在松山湖畔隆重举办&#xff0c;会议以“推动软件和制造业深度融合发展&#xff0c;打造软件和信息服务业集聚高地”为主题&#xff0c;聚焦工业软件应用、智…

JavaScript(简写js)常用事件举例演示

目录 1.窗口事件onblur :失去焦点onfocus:获得焦点onload:窗口加载事件onresize:窗口大小缩放事件 二、表单事件oninput &#xff1a;当文本框内容改变时 &#xff0c;立即将改变内容 输出在控制台onchange&#xff1a; 内容改变事件onclick&#xff1a;鼠标单击时触发此事件 三…

Arduino串口发送接收和串口中断事件

目录 一、硬件介绍 1、控制器 2、TTL转USB串口 二、软件程序 1、单片机发送字符串 &#xff08;1&#xff09;每个串口对应的类名称介绍 &#xff08;2&#xff09;发送功能 &#xff08;3&#xff09;代码 &#xff08;4&#xff09;测试 2、单片机接收字符串 &…

Kafka:本地设置

这是设置 Kafka 将数据从 Elasticsearch 发布到 Kafka 主题的三部分系列的第一部分;该主题将被 Neo4j 使用。第一部分帮助您在本地设置 Kafka。第二部分将讨论如何设置Elasticsearch将数据发布到Kafka主题。最后 将详细介绍如何使用连接器订阅主题并使用数据。 Kafka Kafka 是…

JavaScript中实现页面跳转的几种常用方法

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍在JavaScript中实现页面跳转的几种常用方法以及部分理论知识 &#x1f349;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f4dd;私信必回哟&#x1f601; &#x1f349;博主收将持续更新学习记录获&#xff0c;友友们有任何问题…