使用 Transformer 和 Amazon OpenSearch Service 构建基于列的语义搜索引擎

03d69fda0950f81f6e64eabe32f26875.gif

在数据湖中,对于数据清理和注释、架构匹配、数据发现和跨多个数据来源进行分析等许多操作,查找相似的列有着重要的应用。如果不能从多个不同的来源准确查找和分析数据,就会严重拉低效率,不论是数据科学家、医学研究人员、学者,还是金融和政府分析师,所有人都会深受其害。

传统解决方案涉及到使用词汇关键字搜索或正则表达式匹配,这些方法容易受到数据质量问题的影响,例如缺少列名或者不同数据集中采用了不同的列命名约定(例如, zip_code、zcode、postalcode )。

在这篇文章中,我们演示了一种解决方案,基于列名和/或列内容对相似列执行搜索。该解决方案使用 Amazon OpenSearch Service 中提供的近似最近邻算法来搜索具有相似语义的列。为了协助进行搜索,我们使用 Amazon SageMaker 中通过 sentence-transformers 库预训练的 Transformer 模型,为数据湖中的各个列创建特征表示(嵌入对象)。最后,为了从解决方案进行交互并可视化结果,我们构建了在 Amazon Fargate 上运行的交互式 Streamlit Web 应用程序。

我们提供了一个代码教程,您可用它来部署资源,以便对示例数据或自己的数据运行该解决方案。

解决方案概览

以下架构图展示了查找具有相似语义列的工作流程,分为两个阶段。第一阶段运行 Amazon Step Functions 工作流,从表格列创建嵌入对象并构建 OpenSearch Service 搜索索引。第二阶段是在线推理阶段,通过 Fargate 运行 Streamlit 应用程序。Web 应用程序收集输入搜索查询,并从 OpenSearch Service 索引中检索与该查询近似的 k 个最相似列。

6671d8978b3390737b8445e03a1c294f.png

图1 解决方案架构

自动化工作流按以下步骤进行:

  1. 用户将表格数据集上传到 Amazon Simple Storage Service (Amazon S3) 存储桶中,这会调用 Amazon Lambda 函数来启动 Step Functions 工作流。

  2. 该工作流首先启动 Amazon Glue 作业,将 CSV 文件转换为 Apache Parquet 数据格式。

  3. SageMaker Processing 作业使用预训练模型或自定义列嵌入模型,为各个列创建嵌入对象。SageMaker Processing 作业将每个表的列嵌入对象保存在 Amazon S3 中。

  4. Lambda 函数创建 OpenSearch Service 域和集群,以索引上一步中生成的列嵌入对象。

  5. 最后,使用 Fargate 部署交互式 Streamlit Web 应用程序。Web 应用程序为用户提供了一个界面,用于输入查询,从而在 OpenSearch Service 域中搜索相似的列。

您可以从 GitHub 下载代码教程,在示例数据或自己的数据上试用此解决方案。Github 上提供了如何部署本教程所需资源的说明。

先决条件

要实施此解决方案,您需要:

  • 亚马逊云科技账户。

  • 对亚马逊云服务有一些基本了解,例如 Amazon Cloud Development Kit(Amazon CDK)、Lambda、OpenSearch Service 和 SageMaker Processing。

  • 用于创建搜索索引的表格数据集。您可以使用自己的表格数据,也可以在 GitHub 上下载示例数据集。

构建搜索索引

第一阶段中将构建列搜索引擎索引。下图展示了运行此阶段的 Step Functions 工作流。

c1688a5694694f36e184bbf1eb4d00be.png

图 2 Step Functions 工作流 – 多个嵌入模型

数据集

在这篇文章中,我们构建了一个搜索索引,包括了超过 25 个表格数据集中的 400 多个列。数据集来自以下公共来源:

  •  s3://sagemaker-sample-files/datasets/tabular/ 

  • NYC Open Data

  • Chicago Data Portal

有关索引中包含的表的完整列表,请参阅 GitHub 上的代码教程(https://github.com/aws-samples/tabular-column-semantic-search/blob/main/sample-batch-datasets.json)。

您可以使用自己的表格数据集来扩充示例数据,或者构建自己的搜索索引。我们提供了两个 Lambda 函数用于启动 Step Functions 工作流,这两个函数分别为单个 CSV 文件或批量 CSV 文件构建搜索索引。

将 CSV 转换为 Parquet

使用 Amazon Glue 将原始 CSV 文件转换为 Parquet 数据格式。Parquet 是一种面向列格式文件的格式,是大数据分析中的首选格式,可提供高效的压缩和编码。在我们的实验中,与原始 CSV 文件相比,Parquet 数据格式显著减少了所需的存储空间。我们还使用 Parquet 作为通用数据格式来转换其他数据格式(例如 JSON 和 NDJSON),因为它支持高级嵌套数据结构。

创建表格列嵌入对象

在本文中,为了对示例表格数据集中的单个表列提取嵌入对象,我们使用了从 sentence-transformers 库预训练的以下模型。有关其他模型,请参阅 Pretrained Models(预训练模型,https://www.sbert.net/docs/pretrained_models.html)

d7b9f34aabf807e7014a00fb3f609e0e.png

SageMaker Processing 作业为单个模型运行 create_embeddings.py (代码:https://github.com/aws-samples/tabular-column-semantic-search/blob/main/assets/s3/scripts/create_embeddings.py)。要从多个模型中提取嵌入对象,工作流会并行运行 SageMaker Processing 作业,如 Step Functions 工作流所示。我们使用该模型创建两组嵌入对象:

  • column_name_embeddings – 列名的嵌入对象(标题)

  • column_content_embeddings – 列中所有行的平均嵌入对象

有关列嵌入过程的更多信息,请参阅 GitHub 上的代码教程(https://github.com/aws-samples/tabular-column-semantic-search)。

SageMaker Processing 步骤的替代方法是创建 SageMaker 批量变换,用于在大型数据集上获取列嵌入对象。这将需要将模型部署到 SageMaker 端点。有关更多信息,请参阅 Use Batch Transform(使用批量转换)。

使用 OpenSearch Service 

对嵌入对象编制索引

在本阶段的最后一步,Lambda 函数将列嵌入对象添加到 OpenSearch Service 近似 k 近邻(kNN,k-Nearest-Neighbor)搜索索引中。向每个模型分配自己的搜索索引。有关近似 kNN 搜索索引参数的更多信息,请参阅 k-NN (https://opensearch.org/docs/latest/search-plugins/knn/index/)。

使用 Web 应用程序

进行在线推理和语义搜索

工作流程的第二阶段运行 Streamlit Web 应用程序,您可以在其中提供输入数据,然后在 OpenSearch Service 中搜索编制了索引的具有相似语义的列。应用层使用应用程序负载均衡器、Fargate 和 Lambda。应用程序基础设施作为解决方案的一部分自动部署。

使用该应用程序,您可以提供输入数据,然后搜索具有相似语义的列名和/或列内容。此外,您可以选择嵌入模型以及搜索中返回的最近邻的数量。应用程序接收输入数据,使用指定模型嵌入输入数据,并在 OpenSearch Service 中使用 kNN 搜索,以此来搜索编制了索引的列嵌入对象,并查找与给定输入数据最相似的列。显示的搜索结果包括表名、列名和所确定列的相似度分数,以及数据在 Amazon S3 中的位置,以供进一步探索。

下图显示了 Web 应用程序的示例。在此示例中,我们在数据湖中搜索具有与 district (负载)相似的 Column Names (负载类型)的列。应用程序使用 all-MiniLM-L6-v2 作为嵌入模型,从 OpenSearch Service 索引中返回了 10 个(k)最近邻。

根据 OpenSearch Service 中索引的数据,应用程序返回 transit_district 、 city 、 borough 和 location 作为四个最相似的列。此示例演示了搜索方法识别数据集中相似语义列的功能。

8e2d5f8059f816fe7a9b461c2c857a34.png

图 3:Web 应用程序用户界面

清理

要删除本教程中由 Amazon CDK 创建的资源,请运行以下命令:

 Bash 

cdk destroy --all

左滑查看更多

总结

在这篇文章中,我们介绍了为表格列构建语义搜索引擎的端到端工作流程。

您可以使用我们在 GitHub (https://github.com/aws-samples/tabular-column-semantic-search) 上提供的代码教程,开始处理自己的数据。如果您需要帮助加快在产品和流程中使用机器学习功能的速度,请联系 Amazon Machine Learning Solutions Lab (https://aws.amazon.com/ml-solutions-lab/)。

Original URL: 

https://aws.amazon.com/blogs/big-data/build-a-semantic-search-engine-for-tabular-columns-with-transformers-and-amazon-opensearch-service/

本篇作者

7dda4f3381cdecbb9651f03c483bc6f8.png

Kachi Odoemene 

亚马逊云科技人工智能部门的应用科学家。他构建人工智能/机器学习解决方案,为亚马逊云科技客户解决业务问题。

08f6daf7ffb3fd7d215cc01c284ca9ef.png

Taylor McNally

Amazon Machine Learning Solutions Lab 的深度学习架构师。他帮助来自不同行业的客户利用亚马逊云科技上的人工智能/机器学习构建解决方案。他喜欢醇美咖啡,爱好户外活动,并享受与家人和活泼好动的狗子共度时光。

adbf39d8954a78ba1b28e4dfc8bfaa50.png

Austin Welch 

Amazon ML Solutions Lab 的数据科学家。他开发自定义深度学习模型,帮助亚马逊云科技公共部门客户加快人工智能和云的采用。在业余时间,他喜欢阅读、旅行和柔术。

3d290668abc601400a3408b64270c0c5.gif

4e33180a7dc303bf272e3b1f47225226.gif

听说,点完下面4个按钮

就不会碰到bug了!

608a5f169a6b80f59664832064338ad3.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/58172.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧化工地SaaS平台源码,PC端+APP端+智慧数据可视化大屏端,源码完全开源不封装,自主研发,支持二开,项目使用,微服务+Java++vue+mysql

智慧工地管理平台充分运用数字化技术,聚焦施工现场岗位一线,依托物联网、互联网、AI等技术,围绕施工现场管理的人、机、料、法、环五大维度,以及施工过程管理的进度、质量、安全三大体系为基础应用,实现全面高效的工程…

es和数据库同步方案

5.5 课程信息索引同步 5.5.1 技术方案 通过向索引中添加课程信息最终实现了课程的搜索,我们发现课程信息是先保存在关系数据库中,而后再写入索引,这个过程是将关系数据中的数据同步到elasticsearch索引中的过程,可以简单成为索引…

C++类相关知识

鸽了好久,回来更新下吧 C类 类用于指定对象的形式,是一种用户自定义的数据类型,它是一种封装了数据和函数的组合。类中的数据称为成员变量,函数称为成员函数。类可以被看作是一种模板,可以用来创建具有相同属性和行为…

ip_vs 原理解析 (四)hook 后的开始 NF_INET_LOCAL_IN

文章目录 ip_vs hook 后NF_INET_LOCAL_IN 本章重点: k8s 如何利用 ip_vs 实现源 IP 会话亲和性。 ip_vs hook 后 NF_INET_LOCAL_IN 根据优先级依次是 ip_vs_reply4,ip_vs_remote_request4 ip_vs_reply4| -- ip_vs_out| -- skb_to_full_sk(skb&#xf…

免费API集合分享,赶紧收藏起来~

天气预警:支持输入经纬度或者区域编码,获取指定城市当前生效中的各类天气预警,如寒潮蓝色预警信号,或一次性拉取全国所有生效中的天气预警。 通知短信:当您需要快速通知用户时,通知短信是最快捷有效的方式…

Redis之发布订阅

一、Redis的发布订阅 Redis的发布与订阅功能由PUBLISH、SUBSCRIBE、PSUBSCRIBE等命令组成。通过执行SUBSCRIBE命令,客户端可以订阅一个或多个频道,从而成为这些频道的订阅者(subscriber):每当有其他客户端向被订阅的频…

数据结构之哈希

哈希 1. 哈希概念2. 哈希冲突3. 哈希冲突解决3.1 哈希表的闭散列3.2 哈希表的开散列 4. 哈希的应用4.1 位图4.2 布隆过滤器 哈希(Hash)是一种将任意长度的二进制明文映射为较短的二进制串的算法。它是一种重要的存储方式,也是一种常见的检索方…

Oracle数据库快速入门

前言: 我想现在很多人的入门数据库都是mysql,但是由于工作中会接触到Oracle数据库,如果你有MySQL的基础的话,这篇文章能让你很快掌握Oracle。 目录 1.体系结构 2.创建用户和表空间 2.1.创建表空间 2.2.创建用户 3.数据类型…

无涯教程-分类算法 - 简介

分类可以定义为根据观测值或给定数据点预测类别的过程。分类的输出可以采用"黑色"或"白色"或"垃圾邮件"或"非垃圾邮件"的形式。 在数学上,分类是从输入变量(X)到输出变量(Y)近似映射函数(f)的任务,它属于有监督…

MATLAB算法实战应用案例精讲-【自然语言处理】语义分割模型-DeepLabV3

目录 1、DeepLab系列简介 1.1.DeepLabV1 1.1.1创新点: 1.1.2. 动机: 1.1.3. 应对策略: 1.2.DeepLabV2 1.2.1.创新点: 1.2.2.动机 1.2.3. 应对策略: 1.3.DeepLabV3 1.3.1创新点: 1.3.2. 动机&am…

5G NR:RACH流程-- Msg1之生成PRACH Preamble

随机接入流程中的Msg1,即在PRACH信道上发送random access preamble。涉及到两个问题: 一个是如何产生preamble?一个是如何选择正确的PRACH时频资源发送所选的preamble? 一、PRACH Preamble是什么 PRACH Preamble从数学上来讲是一个长度为…

马斯克遭冷遇,Twitter更名近一个月,许多品牌仍未删除蓝鸟标志

根据报道,Twitter更名为X已经近一个月了,但许多主要品牌仍然没有完全删除其营销中的蓝鸟标志。只有宝洁这一家美国广告支出最高的公司在其网站的社交媒体联系信息中将蓝鸟换成了新的X标志。 另外,Expedia和IBM这两家公司在其网站上甚至没有显…

【C++设计模式】单一职责原则

2023年8月26日,周六上午 目录 概述一个简单的例子用单一职责原则来设计一个简单的学生管理系统 概述 单一职责原则(Single Responsibility Principle,SRP),它是面向对象设计中的一个基本原则。 单一职责原则的核心思…

小主机搭建All in one

想要搞 all in beng 就得到靠虚拟机了主流就是pve和esxi 其中我认为esxi>pve的 esxi不能使用emmc储存因为无法识别 esxi6.7以上时不支持螃蟹卡的所以想要新的esxi8.0就可能要换网卡,或者就安装6.7 esxi有很多已经封装好网卡驱动和 NVMe 驱动的镜像,如有需要可以自行百度,问我…

[C++ 网络协议] 套接字的多种可选项

目录 1. 套接字的可选项 2. 获取/设置套接字可选项 2.1 getsockopt函数(获取套接字可选项) 2.2 setsockopt函数(设置套接字可选项) 3. 常用套接字可选项 3.1 SOL_SOCKET协议层的SO_TYPE可选项 3.2 SOL_SOCKET协议层的SO_SN…

【Math】导数、梯度、雅可比矩阵、黑塞矩阵

导数、梯度、雅可比矩阵、黑塞矩阵都是与求导相关的一些概念,比较容易混淆,本文主要是对它们的使用场景和定义进行区分。 首先需要先明确一些函数的叫法(是否多元,以粗体和非粗体进行区分): 一元函数&…

Matlab(变量与文本读取)

目录 1.变量(数据)类型转换 1.1 字符 1.2 字符串 1.3 逻辑操作与赋值 2.Struct结构体数组 2.1函数的详细介绍: 2.1.1 cell2struct 2.1.1.1 垂直维度转换 2.1.1.2 水平维度转换 2.1.1.3 部分进行转换 2.1.2 rmfield 2.1.3 fieldnames(查…

【真题解析】系统集成项目管理工程师 2022 年上半年真题卷(案例分析)

本文为系统集成项目管理工程师考试(软考) 2022 年上半年真题(全国卷),包含答案与详细解析。考试共分为两科,成绩均 ≥45 即可通过考试: 综合知识(选择题 75 道,75分)案例分析&#x…

使用MATLAB解算炼油厂的选址

背景 记得有一年的数据建模大赛,试题是炼油厂的选址,最后我们采用MATLAB编写(复制)蒙特卡洛算法,还到了省级一等奖,这里把仅有一些记忆和材料,放到这里来,用来纪念消失的青春。 本…

curl请求https|http网站时出现Binary output can mess up your terminal

请求网站时出现​ 那么这里有几种情况 文件本身为二进制文件内容压缩 如果是第一种情况,那么直接保存你要下载的二进制文件,使用 curl https://a.com -o 文件名保存在一个文件中 或者使用 -o -直接输出在终端 curl https://a.com -o -如果你本来访问…