一、六种算法简介
1、红狐优化算法RFO
2、粒子群优化算法PSO
3、鸡群优化算法CSO
4、鲸鱼优化算法WOA
5、蜣螂优化算法DBO
6、人工蜂群算法 (Artificial Bee Colony Algorithm, ABC)
二、6种算法求解CEC2013
(1)CEC2013简介
参考文献:
[1] Liang J J , Qu B Y , Suganthan P N , et al. Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. 2013.
(2)部分python代码
from CEC2013.cec2013 import * import numpy as np from RFO import RFO from ABC import ABC from PSO import PSO from WOA import WOA from CSO import CSO from DBO import DBO import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['Microsoft YaHei'] #主程序 #主程序 function_name =14 #测试函数1-28 SearchAgents_no = 50#种群大小 Max_iter = 100#迭代次数 dim=10#维度 10/30/50/100 lb=-100*np.ones(dim)#下限 ub=100*np.ones(dim)#上限 cec_functions = cec2013(dim,function_name) fobj=cec_functions.func#目标函数 BestX1,BestF1,curve1 = ABC(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解 BestX2,BestF2,curve2 = PSO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解 BestX3,BestF3,curve3 = WOA(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解 BestX4,BestF4,curve4 = CSO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解 BestX5,BestF5,curve5 = DBO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解 BestX6,BestF6,curve6 = DBO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解 #画收敛曲线图 Labelstr=['ABC','PSO','WOA','CSO','DBO','RFO'] Colorstr=['r','g','b','k','c','m'] if BestF1>0:plt.semilogy(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])plt.semilogy(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])plt.semilogy(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])plt.semilogy(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])plt.semilogy(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])plt.semilogy(curve6,color=Colorstr[5],linewidth=2,label=Labelstr[5]) else:plt.plot(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])plt.plot(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])plt.plot(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])plt.plot(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])plt.plot(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])plt.plot(curve6,color=Colorstr[5],linewidth=2,label=Labelstr[5])plt.xlabel("Iteration") plt.ylabel("Fitness") plt.xlim(0,Max_iter) plt.title("cec2013-F"+str(function_name)) plt.legend() plt.savefig(str(function_name)+'.png') plt.show() #