NeRFMeshing - 精确提取NeRF中的3D网格

准确的 3D 场景和对象重建对于机器人、摄影测量和 AR/VR 等各种应用至关重要。 NeRF 在合成新颖视图方面取得了成功,但在准确表示底层几何方面存在不足。

在这里插入图片描述

推荐:用 NSDT编辑器 快速搭建可编程3D场景

我们已经看到了最新的进展,例如 NVIDIA 的 Neuralangelo,但也有 NeRFMeshing,它被提议通过从 NeRF 驱动的网络中提取精确的 3D 网格来解决这一挑战。NeRFMeshing生成的网格在物理上是准确的,并且可以在不同的设备上实时渲染。

1、NeRFMeshing概述

虽然 NeRF 在图像质量、鲁棒性和渲染速度方面显示出令人印象深刻的结果,但从辐射场获取准确的 3D 网格仍然是一个挑战。 现有的表示主要针对视图合成进行优化,而不是明确强制执行精确的几何形状。 这导致使用体积的密集区域而不是零厚度的水平设置表面来近似表面。 此外,大多数以前的方法缺乏实时渲染功能以及与标准 3D 图形管道的兼容性。

NeRFMeshing 提出了一种新颖的管道,用于从经过训练的基于 NeRF 的网络中有效地提取几何精确的网格。 该方法仅增加很小的时间开销,并生成具有精确几何形状和神经颜色的网格,可以在通用硬件上实时渲染。
在这里插入图片描述

NeRFMeshing的关键组件是有符号表面近似网络 (SSAN: Signed Surface Appriximation Network),它训练后处理 NeRF 管道来定义底层表面和外观。 SSAN 估计截断符号距离场 (TSDF: Truncated Signed Distance Field) 和特征外观场,从而能够提取场景的 3D 三角形网格。 然后使用外观网络渲染该网格以生成与视图相关的颜色。

2、NeRFMeshing的优势

与替代方法相比,NeRFMeshing 具有多种优势。 它可以与任何 NeRF 架构相结合,从而轻松融入该领域的新进展。 该方法可以处理无界场景和复杂的非朗伯表面。 NeRFMeshing 还保持了神经辐射场的高保真度,包括视图相关的效果和反射,使其适合实时新颖的视图合成。

人们已经探索了学习有符号距离函数 (SDF: Signed Distance Field) 等替代方法来提取高质量网格,但通常需要额外的输入模式或固定网格模板。 另一方面,NeRFMeshing 利用 NeRF 的自适应能力来稳健地表示 3D 场景,而无需修改 NeRF 架构。 它克服了可微分网格光栅化器面临的优化问题,并实现了速度和几何精度。

NeRFMeshing 提供了一个端到端管道,用于利用 NeRF 的神经特征提取精确的 3D 网格。 该过程涉及从图像训练 NeRF 网络,然后将训练后的网络提炼到 SSAN 模型中。 该模型估计 TSDF 和外观场,从而可以提取 3D 网格。 生成的网格可以无缝集成到图形和模拟管道中,并实现依赖于视图的实时渲染。

NeRFMeshing 引入了一种从 NeRF 驱动的网络获取精确 3D 网格的新颖方法,解决了精确几何表示的挑战。 生成的网格可以实时渲染并提供高保真度,使其适合各种应用。 NeRFMeshing 的灵活性允许与不同的 NeRF 架构和未来的进步轻松集成。 该方法为真实 3D 场景和对象重建提供了可能性,从而实现基于物理的模拟、实时可视化和交互。


原文链接:NeRFMeshing网格提取 — BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/57374.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件工程(二十) 系统运行与软件维护

1、系统转换计划 1.1、遗留系统的演化策略 时至今日,你想去开发一个系统,想完全不涉及到已有的系统,基本是不可能的事情。但是对于已有系统我们有一个策略。 比如我们是淘汰掉已有系统,还是继承已有系统,或者集成已有系统,或者改造遗留的系统呢,都是不同的策略。 技术…

WPF基础入门-Class4-WPF绑定

WPF基础入门 Class4&#xff1a;WPF绑定 一、简单绑定数据 1、cs文件中设置需要绑定的数据&#xff1a; public partial class Class_4 : Window{public Class_4(){InitializeComponent();List<Color> test new List<Color>();test.Add(new Color() { Code &q…

Java并发编程第6讲——线程池(万字详解)

Java中的线程池是运用场景最多的并发框架&#xff0c;几乎所有需要异步或并发执行任务的程序都可以使用线程池&#xff0c;本篇文章就详细介绍一下。 一、什么是线程池 定义&#xff1a;线程池是一种用于管理和重用线程的技术&#xff08;池化技术&#xff09;&#xff0c;它主…

微服务中间件--分布式搜索ES

分布式搜索ES 11.分布式搜索 ESa.介绍ESb.IK分词器c.索引库操作 (类似于MYSQL的Table)d.查看、删除、修改 索引库e.文档操作 (类似MYSQL的数据)1) 添加文档2) 查看文档3) 删除文档4) 修改文档 f.RestClient操作索引库1) 创建索引库2) 删除索引库/判断索引库 g.RestClient操作文…

http协议与apache

http概念&#xff1a; 互联网&#xff1a;是网络的网络&#xff0c;是所有类型网络的母集 因特网&#xff1a;世界上最大的互联网网络。即因特网概念从属于互联网概念 万维网&#xff1a;万维网并非某种特殊的计算机网络&#xff0c;是一个大规模的、联机式的信息贮藏库&…

长胜证券:沪指探底回升涨0.47%,券商、酿酒板块拉升,传媒板块活跃

24日早盘&#xff0c;沪指盘中震动回落&#xff0c;接近午盘快速拉升走高&#xff1b;深成指、创业板指强势上扬&#xff1b;北向资金今天转向&#xff0c;早盘积极出场&#xff0c;半日净买入近30亿元。 到午间收盘&#xff0c;沪指涨0.47%报3092.88点&#xff0c;深成指涨1.1…

最新AI创作系统ChatGPT源码+详细图文部署教程/支持GPT-4/AI绘画/H5端/Prompt知识库/思维导图生成

一、AI系统 如何搭建部署AI创作ChatGPT系统呢&#xff1f;小编这里写一个详细图文教程吧&#xff01;SparkAi使用Nestjs和Vue3框架技术&#xff0c;持续集成AI能力到AIGC系统&#xff01; 1.1 程序核心功能 程序已支持ChatGPT3.5/GPT-4提问、AI绘画、Midjourney绘画&#xf…

Django(8)-静态资源引用CSS和图片

除了服务端生成的 HTML 以外&#xff0c;网络应用通常需要一些额外的文件——比如图片&#xff0c;脚本和样式表——来帮助渲染网络页面。在 Django 中&#xff0c;我们把这些文件统称为“静态文件”。 我们使用static文件来存放静态资源&#xff0c;django会在每个 INSTALLED…

LiveGBS伴侣

【1】LiveGBS 简介 LiveGBS是一套支持国标(GB28181)流媒体服务软件。 国标无插件;提供用户管理及Web可视化页面管理&#xff1b; 提供设备状态管理&#xff0c;可实时查看设备是否掉线等信息&#xff1b; 实时流媒体处理&#xff0c;PS&#xff08;TS&#xff09;转ES&…

GFPGAN 集成Flask 接口化改造

GFPGAN是一款腾讯开源的人脸高清修复模型&#xff0c;基于github上提供的demo&#xff0c;可以简单的集成Flask以实现功能接口化。 GFPGAN的安装&#xff0c;Flask的安装请参见其他文章。 如若使用POSTMAN进行测试&#xff0c;需使用POST方式&#xff0c;form-data的请求体&am…

5G 数字乡村数字农业农村大数据中心项目农业大数据建设方案PPT

导读&#xff1a;原文《5G 数字乡村数字农业农村大数据中心项目农业大数据建设方案PPT》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。以下是部分内容&#xff0c; 喜…

TCP协议的重点知识点

TCP协议的重点知识点 TCP(传输控制协议)是一种面向连接、可靠的数据传输协议,工作在传输层,提供可靠的字节流服务。它是互联网协议栈中最重要、最复杂的协议之一,也是面试中常被问到的知识点。本文将详细介绍TCP协议的各个重要概念。 TCP基本特性 TCP主要具有以下基本特性: …

Django(9)-表单处理

django支持使用类创建表单实例 polls/forms.py from django import forms class NameForm(forms.Form):your_nameforms.CharField(label"Your name",max_length100)这个类创建了一个属性&#xff0c;定义了一个文本域&#xff0c;和它的label和最大长度。 polls/vi…

浅析Linux SCSI子系统:设备管理

文章目录 概述设备管理数据结构scsi_host_template&#xff1a;SCSI主机适配器模板scsi_host&#xff1a;SCSI主机适配器主机适配器支持DIF scsi_target&#xff1a;SCSI目标节点scsi_device&#xff1a;SCSI设备 添加主机适配器构建sysfs目录 添加SCSI设备挂载LunIO请求队列初…

华为云Stack的学习(三)

四、华为云Stack公共组件 1.华为云Stack公共负载均衡方案介绍 1.1 LVS原理 LVS是四层负载均衡&#xff0c;建立在OSI模型的传输层之上&#xff0c;所以效率非常高。 LVS有两种转发模式&#xff1a; NAT模式的转发主要通过修改IP地址&#xff08;位于OSI模型的第三层网络层&…

Jmeter(二十八):beanshell的使用

Beanshell 是一种轻量级的 Java 脚本,纯 Java 编写的,能够动态的执行标准 java 语法及一些扩展脚本语法,类似于 javaScript,在工作中可能用的多的就是: Beanshell 取样器:跟Http取样器并列Beanshell前置处理器:一般放在Http请求下,在请求前处理一些数据Beanshell后置处…

基于 xhr 实现 axios

基于 xhr 实现 axios 上面我们讲到二次封装 axios &#xff0c;但是现在我们尝试完全脱离 axios&#xff0c;自己实现一个 axios&#xff0c;由于 axios 底层是基于 xhr 做了二次封装&#xff0c;所以我们也可以尝试一下。 xhr 二次封装 src/plugins/xhr.js /*** 请求拦截器…

python web GUI框架-NiceGUI 教程(二)

python web GUI框架-NiceGUI 教程&#xff08;二&#xff09; streamlit可以在一些简单的场景下仍然推荐使用&#xff0c;但是streamlit实在不灵活&#xff0c;受限于它的核心机制&#xff0c;NiceGUI是一个灵活的web框架&#xff0c;可以做web网站也可以打包成独立的exe。 基…

大数据——一文熟悉HBase

1、HBase是什么 HBase是基于HDFS的数据存储&#xff0c;它建立在HDFS文件系统上面&#xff0c;利用了HDFS的容错能力&#xff0c;内部还有哈希表并利用索引&#xff0c;可以快速对HDFS上的数据进行随时读写功能。 Hadoop在已经有一个HiveMapReduce结构的数据读写功能&#x…

②matlab桌面和编辑器

目录 matlab编辑器练习 运行脚本 matlab编辑器练习 您可以通过点击灰色代码框在脚本中输入命令。 准备就绪后&#xff0c;您可以通过点击蓝色的提交按钮提交代码。 任务 在脚本中输入命令 r 3。 2.任务 在脚本中添加命令 x pi*r^2。 附加练习 当您在实时编辑器中完成…