Python序列类型

序列(Sequence)是有顺序的数据列,Python 有三种基本序列类型:list, tuple 和 range 对象,序列(Sequence)是有顺序的数据列,二进制数据(bytes) 和 文本字符串(str)也是序列类型,它们是特殊序列类型,会有一些特殊的性质和操作。

在实际的使用中,我们并不直接使用序列(Sequence)类型,而是具体使用list、tuple和range对象等等,本文主要是做一个归纳、概括性的说明

序列类型

Python 的内置序列类型有:

类型

创建方法

可变性

特别方法

列表

list()

可变

sort()

元组

tuple()

不可变

等差数列

range()

不可变

属性方法

字符串

str()

不可变

字符的方法

字节串

bytes()

不可变

字节数组

bytearray()

可变

内存视图

memoryview()

不可变

要注意的是,集合、字典不是序列类型,虽然字典在最新的 Python 版本中具备了元素顺序特性,但这不是一种「保证」。

可以通过 

isinstance(obj, collections.Sequence)

来判定对象是不是一个序列类型。

扁平序列

扁平序列有两个特点,第一,内部存储的都是值而不是引用(或者说是内存地址);第二,内部存储的都是同一种数据类型,而且只能存储数值、字节、字符这样的基础数据类型。常见的扁平序列如字符串str、字节bytes、数组array.array、字节数组bytearray和内存视图memoryview等。

我们举一个例子,例如s1 = 'abc',这是一个创建字符序列str的命令。这条命令运行时,Python解释器会先在内存中开辟一块连续的内存空间来存储a、b和c三个字符,创建好对象后会将这块内存的首地址抛给外界,由变量s1来接收,变量s1是另一块内存,这块内存中就存储了字符串序列'abc'的内存首地址。之后如果需要使用'abc'这个对象,都是通过变量s1。当解释器读到变量s1时,发现其存储的是一个内存地址,就会直接读取这个内存地址对应数据,完成对象的访问。

 

 

容器序列

与扁平序列相对应,容器序列中存储的不是值而是对象的引用,正因为如此,容器中可以容纳任何数据类型。常见的容器序列包括列表list、元祖tuple等。

如下例子:list1 = [1,'abc',[10,20,’age']],这是一个列表。

 

可以看到,对于列表本身来说,其在内存中是连续的,但是列表的内存中存储的并不是值本身,而是对象(列表中元素)的引用。至于对象(列表中的元素)本身,则存储在别的内存块中,这些内存可能是连续的,也可能是不连续的,大概率是不连续的。而且,列表中不仅仅可以存储基本数据类型intstr,还可以存储列表list

可变序列

可变序列是指可以在原内存地址上对数据进行修改的序列。这类序列包括列表list、字节数组bytearray、数组array.array,内存视图memoryview等。

列表list提供了append方法,可以在原列表内存地址上对列表进行修改:

>>> b = [1,2,3]
>>> id(b)
4352472384
>>> b.append(4)
>>> id(b)   #追加了元素,但是b的地址并没有变化
4352472384
>>> b
[1, 2, 3, 4]

这里给列表增加了一个元素,但是列表的内存地址并没有发生变化。

不可变序列

不可变序列指的是不可以在原内存地址上对序列进行修改。这类序列包括字符序列str、元祖tuple、和字节序列bytes

例如,对于字符序列str,一旦创建就无法在原内存地址上对数据进行修改,强行修改则是创建新的对象:

>>> s = 'abc'
>>> id(s)
4346120656
>>> s = '123'
>>> id(s)   #s的内容和地址都变化了
4349997680
>>> s
'123'
>>> s += '4'
>>> id(s)  #即使是追加,s的内容和地址也都变化了
4349376816
>>> s
'1234'

可能有人对元祖不可修改无法理解,对于容器序列来说,不可变指的是容器中每一个元素的引用不可变,而不是每一个元素的值不可变。如下面的例子:

>>> a = ('1','2',['3','4'])
# 记录元祖的内存地址
>>> id(a)
1665412226688
# 记录元祖中第一个元素的内存地址
>>> id(a[0])
140710344787616
# 修改元祖中的第一个元素,可以看到报错了,提示元祖对象不支持赋值。因为第一个元素是一个不可变对象,强行修改会创建新的对象,产生新的引用,而元祖不支持修改内部元素的引用,所以报错。
>>> a[0]='5'
Traceback (most recent call last):File "<pyshell#14>", line 1, in <module>a[0]='5'
TypeError: 'tuple' object does not support item assignment
# 记录元祖中第三个元素列表的内存地址
>>> id(a[2])
1665412212544
# 我们的元祖中第三个元素是一个list,这是一个可变的序列,使用append方法会在原内存地址上进行修改,这样保证元素中第三个元素的引用并不会发生变化,所以修改成功。
>>> a[2].append('9')
# 可以看到第三个元素列表修改成功
>>> a
(1, 2, [3, 4, 9])
# 但是第三个元素的内存地址并未发生变化
>>> id(a[2])
1665412212544
# 元祖第三个元素修改后,元祖本身的内存地址并未发生变化。
>>> id(a)
1665412226688

这个例子中,我们先创建了一个元祖(1,2,[3,4]),元祖中有三个元素1、2、[3,4],前两个都是不可变的字符序列str,通过前面的例子我们已经知道,如果对字符序列强行修改,不会改变原来的字符,而是创建新的对象。新的对象就意味着产生一个新的内存地址,这会导致元祖第一个元素的引用发生变化。这是元祖不能够接受的,所以出现报错。

然而,我们发现对创建的元祖的第三个元素进行修改,却修改成功了,原因是第三个元素是一个列表list,是一个可变序列,对其调用append方法是在原地址上对数据进行的修改,而并不会改变本身的内存地址,因此元祖第三个元素的引用不会发生变化,故而修改成功。

因此我们说对于容器序列,不可变意味着元素的引用不可变,相反,可变则意味着引用可以发生变化:

>>> a = [1,2,[3,4]]
>>> id(a)
2338191916032
>>> id(a[2])
2338200822784
>>> a[2]=5
>>> a
[1, 2, 5]
>>> id(a[2])
140710407702304
>>> id(a)
2338191916032

 看见列表是可以修改元素的引用的,因为它是可变类型。

序列类型的协议

以上我们对Python中的序列类型进行了分类,接下来我们学习一下序列类型的协议。通过这一部分的学习,你会对面向对象以及常见序列类型有更加深刻的认识。

Python为可变序列和不可变序列提供了两个基类Sequence和MutableSequence,这两个基类存在于内置模块collections.abc中,与其他常见的类如intlist等不同,这两个基类都是抽象基类,抽象基类确定了序列类型的协议,所有属于序列类型的都要遵循这个抽象基类的协议。

Sequence和MutableSequence两个类的继承关系如下:

 

可变序列MutableSequence类继承自不可变序列Sequence类,Sequence类又继承了两个类Reversible和Collection,Collection又继承自Container、Iterable、Sized三个抽象基类。通过这个继承图,我们至少应该能够知道,对于标准不可变序列类型Sequence,应该至少实现以下几种方法(遵循这些协议):

__contains__,__iter__,__len__,__reversed__,__getitem__,index,count

 以Python的内置类型list为例说明这几个方法:

  • 实现了__contains__方法,就意味着list可以进行成员运算,即使用innot in
  • 实现了__iter__方法,意味着list是一个可迭代对象,可以进行for循环、拆包、生成器表达式等多种运算;
  • 实现了__len__方法,意味着可以使用内置函数len()。同时,当判断一个list的布尔值时,如果list没有实现__bool__方法,也会尝试调用__len__方法;
  • 实现了__reversed__方法,意味着可以实现反转操作;
  • 实现了__getitem__方法,意味着可以进行索引和切片操作;
  • 实现了indexcount方法,则表示可以按条件取索引和统计频数。

标准的Sequence类型声明了上述方法,这意味着继承自Sequence的子类,其实例化产生的对象将是一个可迭代对象、可以使用for循环、拆包、生成器表达式、in、not in、索引、切片、翻转等等很多操作。这同时也表明,如果我们说一个对象是不可变序列时,暗示这个对象是一个可迭代对象、可以使用for循环、......。

而对于标准可变序列MutableSequence,我们发现,除了要实现不可变序列中几种方法之外,至少还需要实现如下几个方法(遵循这些协议):

__setitem__,__delitem__,insert,append,extend,pop,remove,__iadd__

以Python的内置类型list为例这几个方法:

  • 实现了__setitem__方法,就可以对列表中的元素进行修改,如代码a[0]=2就是在调用这个方法
  • 实现了__delitem__,pop,remove方法,就可以对列表中的元素进行删除,如代码del a[0]就是在调用__delitem__方法
  • 实现了insert,append,extend方法,就可以在序列中插入元素;
  • 实现了__iadd__方法,列表就可以进行增量赋值。

这就是说,对于标准可变序列类型,除了执行不可变类型的查询操作之外,其子类的实例对象都可以执行增删改的操作。

鸭子类型

抽象基类Sequence和MutableSequence声明了对于一个序列类型应该实现那些方法,很显然,如果一个类直接继承自Sequence类,内部也重载了Sequence中的七个方法,那么显然这个类一定是序列类型了,MutableSequence的子类也是一样。确实如此,但是当我们查看列表list、字符序列str、元组tuple的继承链时,发现在其mro列表(Method Resolution Order, MRO代表了类继承的顺序)中并没有Sequence和MutableSequence类,也就是说,这些内置类型并没有直接继承自这两个抽象基类。

>>> list.__mro__
(<class 'list'>, <class 'object'>)
>>> tuple.__mro__
(<class 'tuple'>, <class 'object'>)
>>> str.__mro__
(<class 'str'>, <class 'object'>)

其实,Python中有一种被称为“鸭子类型”的编程风格。在这种风格下,我们并不太关注一个对象的类型是什么,它继承自那个类型,而是关注他能实现那些功能,定义了那些方法。正所谓如果一个东西看起来像鸭子,走起来像鸭子,叫起来像鸭子,那他就是鸭子。

在这种思想之下,如果一个类并不是直接继承自Sequence,但是内部却实现了__contains__,__iter__,__len__,__reversed__,__getitem__,index,count几个方法,我们就可以称之为不可变序列。甚至都不必这么严格,可能只需要实现__len__,__getitem__两个方法就可以称作是不可变序列类型。对于可变序列也同样如此。

序列的操作

序列的特点是由若干元素组成,元素的分布有顺序,因此根据这个特点,它们支持一些共性的操作。

通用操作

以下是所有序列类型均支持的操作:

运算

结果

备注

x in s

如果 s 中的某项等于 x 则结果为 True,否则为 False

x not in s

如果 s 中的某项等于 x 则结果为 False,否则为 True

s + t

与 t 相拼接

s * n 或 n * s

相当于 s 与自身进行 n 次拼接

s[i]

的第 i 项,起始为 0

切片操作

s[i:j]

从 i 到 j 的切片

s[i:j:k]

从 i 到 j 步长为 k 的切片

len(s)

的长度

min(s)

的最小项

max(s)

的最大项

s.index(x[, i[, j]])

在 s 中首次出现项的索引号
(索引号在 i 或其后且在 j 之前)

count 方法

s.count(x)

在 s 中出现的总次数

index 方法

for i in x:pass

迭代

hash(x)

对象的哈希值

仅不可变序列

sorted(x)

排序

all(x) 或者 any(x)

全真或者有真检测

iter(x)

生成迭代器

可变序列类型

以下是仅可变序列支持的操作:

运算

结果:

s[i] = x

将 s 的第 i 项替换为 x

s[i:j] = t

将 s 从 i 到 j 的切片替换为可迭代对象 t 的内容

del s[i:j]

等同于 s[i:j] = []

s[i:j:k] = t

将 s[i:j:k] 的元素替换为 t 的元素

del s[i:j:k]

从列表中移除 s[i:j:k] 的元素

s.append(x)

将 x 添加到序列的末尾
(等同于 s[len(s):len(s)] = [x])

s.clear()

从 s 中移除所有项 (等同于 del s[:])

s.copy()

创建 s 的浅拷贝 (等同于 s[:])

s.extend(t) 或 s += t

用 t 的内容扩展 s
(基本上等同于 s[len(s):len(s)] = t)

s *= n

使用 s 的内容重复 n 次来对其进行更新

s.insert(i, x)

在由 i 给出的索引位置将 x 插入 s
(等同于 s[i:i] = [x])

s.pop() 或 s.pop(i)

提取在 i 位置上的项,并将其从 s 中移除

s.remove(x)

删除 s 中第一个 s[i] 等于 x 的项目。

s.reverse()

就地将列表中的元素逆序。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56749.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android BatteryManager的使用及BatteryService源码分析

当需要监控系统电量时&#xff0c;用 BatteryManager 来实现。 参考官网 监控电池电量和充电状态 获取电池信息 通过监听 Intent.ACTION_BATTERY_CHANGED 广播实现&#xff0c;在广播接收器中获取电池信息。 这是个粘性广播&#xff0c;即使过了广播发出的时间点后再注册广…

从零起步:学习数据结构的完整路径

文章目录 1. 基础概念和前置知识2. 线性数据结构3. 栈和队列4. 树结构5. 图结构6. 散列表和哈希表7. 高级数据结构8. 复杂性分析和算法设计9. 实践和项目10. 继续学习和深入11. 学习资源12. 练习和实践 &#x1f389;欢迎来到数据结构学习专栏~从零起步&#xff1a;学习数据结构…

Java实现根据短连接获取1688商品详情数据,1688淘口令接口,1688API接口封装方法

要通过1688的API获取商品详情数据&#xff0c;您可以使用1688开放平台提供的接口来实现。以下是一种使用Java编程语言实现的示例&#xff0c;展示如何通过1688开放平台API获取商品详情属性数据接口&#xff1a; 首先&#xff0c;确保您已注册成为1688开放平台的开发者&#xf…

研华I/O板卡 Win10+Qt+Cmake 开发环境搭建

文章目录 一.研华I/O板卡 Win10QtCmake 开发环境搭建 一.研华I/O板卡 Win10QtCmake 开发环境搭建 参考这个链接安装研华I/O板卡驱动程序系统环境变量添加研华板卡dll Qt新建一个c项目 cmakeList.txt中添加研华库文件 cmake_minimum_required(VERSION 3.5)project(advantechDA…

【多线程】Thread类的用法

文章目录 1. Thread类的创建1.1 自己创建类继承Thread类1.2 实现Runnable接口1.3 使用匿名内部类创建Thread子类对象1.4 使用匿名内部类创建Runnable子类对象1.5 使用lambda创建 2. Thread常见的构造方法2.1 Thread()2.2 Thread(Runnable target)2.3 Thread(String name)2.4 Th…

Flink_state 的优化与 remote_state 的探索

摘要&#xff1a;本文整理自 bilibili 资深开发工程师张杨&#xff0c;在 Flink Forward Asia 2022 核心技术专场的分享。本篇内容主要分为四个部分&#xff1a; 相关背景state 压缩优化Remote state 探索未来规划 点击查看原文视频 & 演讲PPT 一、相关背景 1.1 业务概况 从…

【EI检索稳定】第六届电力电子与控制工程国际学术会议(ICPECE 2023)

第六届电力电子与控制工程国际学术会议 2023 6th International Conference on Power Electronics and Control Engineering (ICPECE 2023) 第六届电力电子与控制工程国际学术会议由广西大学主办&#xff0c;重庆大学、华东交通大学、长春理工大学、大连交通大学联合主办。电…

【AI模型】gym强化学习仿真平台配置与使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍gym强化学习仿真平台配置与使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&…

Linux内核学习(十)—— 块 I/O 层(基于Linux 2.6内核)

目录 一、剖析一个块设备 二、缓冲区和缓冲区头 三、bio 结构体 四、请求队列 五、I/O 调度程序 系统中能够随机&#xff08;不需要按顺序&#xff09;访问固定大小数据片&#xff08;chunks&#xff09;的硬件设备称作块设备&#xff0c;这些固定大小的数据片就称作块。最…

回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现WOA-RBF鲸鱼优化算法优化径向基函数神经网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#…

大数据、AI和云原生:引领未来软件开发的技术演进

文章目录 **1. 数据驱动的创新&#xff1a;****2. 智能化应用的兴起&#xff1a;****3. 云原生的敏捷和可扩展性&#xff1a;****4. 实时性和即时性&#xff1a;****5. 数据隐私和安全&#xff1a;****6. 跨平台和跨设备&#xff1a;****7. 自动化和智能编程&#xff1a;****8.…

Unity中的数学基础——贝塞尔曲线

一&#xff1a;前言 一条贝塞尔曲线是由一组定义的控制点P0到 Pn&#xff0c;n1为线性&#xff0c;n2为二次......第一个和最后一个控制点称为起点和终点&#xff0c;中间的控制点一般不会位于曲线上 获取两个点之间的点就是通过线性插值&#xff08; Mathf.Lerp&#xff09…

AR室内导航技术之技术说明与效果展示

随着科技的飞速发展&#xff0c;我们周围的环境正在经历着一场数字化的革命。其中&#xff0c;AR室内导航技术以其独特的魅力&#xff0c;为我们打开了一扇通往全新数字化世界的大门。本文将为您详细介绍这一技术的实现原理、工具应用以及成品展示&#xff0c;带您领略AR室内导…

k8s 安装 kubernetes安装教程 虚拟机安装k8s centos7安装k8s kuberadmin安装k8s k8s工具安装 k8s安装前配置参数

k8s采用master, node1, node2 。三台虚拟机安装的一主两从&#xff0c;机器已提前安装好docker。下面是机器配置&#xff0c;k8s安装过程&#xff0c;以及出现的问题与解决方法 虚拟机全部采用静态ip, master 30机器, node1 31机器, node2 32机器 机器ip 192.168.164.30 # ma…

谷歌浏览器的受欢迎之谜:探析其引人入胜的特点

文章目录 &#x1f340;引言&#x1f340;1. 极速的浏览体验&#x1f340;2. 简洁直观的界面&#x1f340;3. 强大的同步功能&#x1f340;4. 丰富的扩展生态系统&#x1f340;5. 安全与隐私的关注&#x1f340;6. 持续的技术创新&#x1f340;7. 跨平台支持和云整合&#x1f3…

vue中css修改滚动条样式

vue中css修改滚动条样式 效果图&#xff1a; 代码(在app.vue中全局增加下面样式即可)&#xff1a; &::-webkit-scrollbar {width: 8px;height: 8px;border-radius: 3px;}/*定义滚动条轨道 内阴影圆角*/&::-webkit-scrollbar-track {//-webkit-box-shadow: inset 0 0 …

合宙Air724UG LuatOS-Air LVGL API控件--进度条 (Bar)

进度条 (Bar) Bar 是进度条&#xff0c;可以用来显示数值&#xff0c;加载进度。 示例代码 – 创建进度条 bar lvgl.bar_create(lvgl.scr_act(), nil) – 设置尺寸 lvgl.obj_set_size(bar, 200, 20); – 设置位置居中 lvgl.obj_align(bar, NULL, lvgl.ALIGN_CENTER, 0, 0) …

bh004- Blazor hybrid / Maui 使用 BootstrapBlazor UI 库快速教程

1. 建立工程 bh004_BootstrapBlazorUI 源码 2. 添加 nuget 包 <PackageReference Include"BootstrapBlazor" Version"7.*" /> <PackageReference Include"BootstrapBlazor.FontAwesome" Version"7.*" />3. 添加样式表文…

精准营销的三种打法:社群圈层、人群包、跨屏联动

数据时代的来临&#xff0c;使营销变得有迹可寻&#xff0c;不再只是广撒网&#xff0c;只求愿者上钩&#xff0c;而是更注重精准营销。 若想制定优质的数字营销方案&#xff0c;就要懂得如何与数据打交道&#xff0c;知道抓取哪些数据。众引传播在数据抓取时较为关注两类数据…

Unity3D Pico VR 手势识别 二

Unity3D Pico VR 手势识别_Cool-浩的博客-CSDN博客 此篇主要讲解怎么手势追踪&#xff0c;手势姿态自定义预制识别&#xff0c;不会导入SDK和配置环境的请看上一章节 环境要求 SDK 版本&#xff1a;2.3.0 及以上PICO 设备型号&#xff1a;PICO Neo3 和 PICO 4 系列PICO 设备系…