【youcans 的 OpenCV 例程200篇】148. 图像分割之线检测

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中


【youcans 的 OpenCV 例程200篇】148. 图像分割之线检测


2. 点、线和边缘检测

本节基于图像灰度的不连续性,讨论根据灰度的突变检测边界,以此为基础进行图像分割。

  • 边缘像素是图像中灰度突变的像素,而边缘是相连边缘像素的集合。
  • 线是一条细边缘线段,其两侧的背景灰度与线段的像素灰度存在显著差异。
  • 孤立的点是一个被背景像素围绕的前景像素,或一个被前景像素围绕的背景像素。

导数可以用来检测灰度的局部突变:

  • 一阶导数通常产生粗边缘;
  • 二阶导数对精细细节(如细线、孤立点和噪声)的响应更强;
  • 二阶导数在灰度斜坡和台阶过渡处会产生双边缘响应,即二阶导数在进入和离开边缘时的符号相反;
  • 二阶导数的符号可用于确定边缘的过渡是从亮到暗还是从暗到亮。

计算图像中每个像素位置的一阶导数和二阶导数的方法是空间卷积。对一个 3*3 模板,计算模板区域内灰度值与模板系数的卷积。



### 2.2 图像的线检测

线检测的复杂度更高。

使用二阶导数将导致更强的滤波器响应,产生比一阶导数更细的线,因此可以使用拉普拉斯核进行线检测。

由于拉普拉斯检测核是各向同性的,其响应与方向无关。如果希望检测某些特定方向的线,可以使用与方向有关的卷积核:
K0o=[−1−1−1222−1−1−1],K+45o=[2−1−1−12−1−1−12],K90o=[−12−1−12−1−12−1],K−45o=[−1−12−12−12−1−1]\begin{aligned} &K_{0^o} = \begin{bmatrix} -1 & -1 & -1\\ 2 & 2 & 2\\ -1 & -1 & -1\\ \end{bmatrix}, \ &K_{+45^o} = \begin{bmatrix} 2 & -1 & -1\\ -1 & 2 & -1\\ -1 & -1 & 2\\ \end{bmatrix}, \\ &K_{90^o} = \begin{bmatrix} -1 & 2 & -1\\ -1 & 2 & -1\\ -1 & 2 & -1\\ \end{bmatrix}, \ &K_{-45^o} = \begin{bmatrix} -1 & -1 & 2\\ -1 & 2 & -1\\ 2 & -1 & -1\\ \end{bmatrix} \end{aligned} K0o=121121121, K90o=111222111, K+45o=211121112,K45o=112121211


例程 11.2:图像的线检测

    # 11.2 图像的线检测 (Laplace 算子)imgGray = cv2.imread("../images/Fig0905a.tif", flags=0)# scipy.signal 实现卷积运算 (注意:不能用 cv2.filter2D 处理)from scipy import signalkernelLaplace = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]])  # Laplacian kernelimgLaplace = signal.convolve2d(imgGray, kernelLaplace, boundary='symm', mode='same')  # same 卷积kernel1 = np.array([[-1, -1, -1], [2, 2, 2], [-1, -1, -1]])  # 0 degree, horizontalkernel2 = np.array([[2, -1, -1], [-1, 2, -1], [-1, -1, 2]])  # +45 degreekernel3 = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]])  # 90 degree, verticalkernel4 = np.array([[-1, -1, 2], [-1, 2, -1], [2, -1, -1]])  # -45 degreeimgLine1 = signal.convolve2d(imgGray, kernel1, boundary='symm', mode='same')  # horizontal kernelimgLine2 = signal.convolve2d(imgGray, kernel2, boundary='symm', mode='same')imgLine3 = signal.convolve2d(imgGray, kernel3, boundary='symm', mode='same')  # vertical kernelimgLine4 = signal.convolve2d(imgGray, kernel4, boundary='symm', mode='same')plt.figure(figsize=(9, 7))plt.subplot(231), plt.axis('off'), plt.title("original")plt.imshow(imgGray, cmap='gray', vmin=0, vmax=255)plt.subplot(232), plt.axis('off'), plt.title("abs(Laplacian)")plt.imshow(np.maximum(imgLaplace, -imgLaplace), cmap='gray', vmin=0, vmax=255)plt.subplot(233), plt.axis('off'), plt.title("horizontal")plt.imshow(imgLine1[200:,200:], cmap='gray', vmin=0, vmax=255)plt.subplot(234), plt.axis('off'), plt.title("+45 degree")plt.imshow(imgLine2[:286,:286], cmap='gray', vmin=0, vmax=255)plt.subplot(235), plt.axis('off'), plt.title("vertical")plt.imshow(imgLine3[200:,200:], cmap='gray', vmin=0, vmax=255)plt.subplot(236), plt.axis('off'), plt.title("-45 degree")plt.imshow(imgLine4[:286,200:], cmap='gray', vmin=0, vmax=255)plt.tight_layout()plt.show()

在这里插入图片描述


(本节完)


版权声明:

youcans@xupt 原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/124027129)

Copyright 2022 youcans, XUPT
Crated:2022-4-8


欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中
欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中

【youcans 的 OpenCV 例程200篇】01. 图像的读取(cv2.imread)
【youcans 的 OpenCV 例程200篇】02. 图像的保存(cv2.imwrite)
【youcans 的 OpenCV 例程200篇】03. 图像的显示(cv2.imshow)
【youcans 的 OpenCV 例程200篇】04. 用 matplotlib 显示图像(plt.imshow)
【youcans 的 OpenCV 例程200篇】05. 图像的属性(np.shape)
【youcans 的 OpenCV 例程200篇】06. 像素的编辑(img.itemset)
【youcans 的 OpenCV 例程200篇】07. 图像的创建(np.zeros)
【youcans 的 OpenCV 例程200篇】08. 图像的复制(np.copy)
【youcans 的 OpenCV 例程200篇】09. 图像的裁剪(cv2.selectROI)
【youcans 的 OpenCV 例程200篇】10. 图像的拼接(np.hstack)
【youcans 的 OpenCV 例程200篇】11. 图像通道的拆分(cv2.split)
【youcans 的 OpenCV 例程200篇】12. 图像通道的合并(cv2.merge)
【youcans 的 OpenCV 例程200篇】13. 图像的加法运算(cv2.add)
【youcans 的 OpenCV 例程200篇】14. 图像与标量相加(cv2.add)
【youcans 的 OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)
【youcans 的 OpenCV 例程200篇】16. 不同尺寸的图像加法
【youcans 的 OpenCV 例程200篇】17. 两张图像的渐变切换
【youcans 的 OpenCV 例程200篇】18. 图像的掩模加法
【youcans 的 OpenCV 例程200篇】19. 图像的圆形遮罩
【youcans 的 OpenCV 例程200篇】20. 图像的按位运算
【youcans 的 OpenCV 例程200篇】21. 图像的叠加
【youcans 的 OpenCV 例程200篇】22. 图像添加非中文文字
【youcans 的 OpenCV 例程200篇】23. 图像添加中文文字
【youcans 的 OpenCV 例程200篇】24. 图像的仿射变换
【youcans 的 OpenCV 例程200篇】25. 图像的平移
【youcans 的 OpenCV 例程200篇】26. 图像的旋转(以原点为中心)
【youcans 的 OpenCV 例程200篇】27. 图像的旋转(以任意点为中心)
【youcans 的 OpenCV 例程200篇】28. 图像的旋转(直角旋转)
【youcans 的 OpenCV 例程200篇】29. 图像的翻转(cv2.flip)
【youcans 的 OpenCV 例程200篇】30. 图像的缩放(cv2.resize)
【youcans 的 OpenCV 例程200篇】31. 图像金字塔(cv2.pyrDown)
【youcans 的 OpenCV 例程200篇】32. 图像的扭变(错切)
【youcans 的 OpenCV 例程200篇】33. 图像的复合变换
【youcans 的 OpenCV 例程200篇】34. 图像的投影变换
【youcans 的 OpenCV 例程200篇】35. 图像的投影变换(边界填充)
【youcans 的 OpenCV 例程200篇】36. 直角坐标与极坐标的转换
【youcans 的 OpenCV 例程200篇】37. 图像的灰度化处理和二值化处理
【youcans 的 OpenCV 例程200篇】38. 图像的反色变换(图像反转)
【youcans 的 OpenCV 例程200篇】39. 图像灰度的线性变换
【youcans 的 OpenCV 例程200篇】40. 图像分段线性灰度变换
【youcans 的 OpenCV 例程200篇】41. 图像的灰度变换(灰度级分层)
【youcans 的 OpenCV 例程200篇】42. 图像的灰度变换(比特平面分层)
【youcans 的 OpenCV 例程200篇】43. 图像的灰度变换(对数变换)
【youcans 的 OpenCV 例程200篇】44. 图像的灰度变换(伽马变换)
【youcans 的 OpenCV 例程200篇】45. 图像的灰度直方图
【youcans 的 OpenCV 例程200篇】46. 直方图均衡化
【youcans 的 OpenCV 例程200篇】47. 图像增强—直方图匹配
【youcans 的 OpenCV 例程200篇】48. 图像增强—彩色直方图匹配
【youcans 的 OpenCV 例程200篇】49. 图像增强—局部直方图处理
【youcans 的 OpenCV 例程200篇】50. 图像增强—直方图统计量图像增强
【youcans 的 OpenCV 例程200篇】51. 图像增强—直方图反向追踪
【youcans 的 OpenCV 例程200篇】52. 图像的相关与卷积运算
【youcans 的 OpenCV 例程200篇】53. Scipy 实现图像二维卷积
【youcans 的 OpenCV 例程200篇】54. OpenCV 实现图像二维卷积
【youcans 的 OpenCV 例程200篇】55. 可分离卷积核
【youcans 的 OpenCV 例程200篇】56. 低通盒式滤波器
【youcans 的 OpenCV 例程200篇】57. 低通高斯滤波器
【youcans 的 OpenCV 例程200篇】58. 非线性滤波—中值滤波
【youcans 的 OpenCV 例程200篇】59. 非线性滤波—双边滤波
【youcans 的 OpenCV 例程200篇】60. 非线性滤波—联合双边滤波
【youcans 的 OpenCV 例程200篇】61. 导向滤波(Guided filter)
【youcans 的 OpenCV 例程200篇】62. 图像锐化——钝化掩蔽
【youcans 的 OpenCV 例程200篇】63. 图像锐化——Laplacian 算子
【youcans 的 OpenCV 例程200篇】64. 图像锐化——Sobel 算子
【youcans 的 OpenCV 例程200篇】65. 图像锐化——Scharr 算子
【youcans 的 OpenCV 例程200篇】66. 图像滤波之低通/高通/带阻/带通
【youcans 的 OpenCV 例程200篇】67. 空间域图像增强的综合应用
【youcans 的 OpenCV 例程200篇】68. 空间域图像增强的综合应用
【youcans 的 OpenCV 例程200篇】69. 连续非周期信号的傅立叶系数
【youcans 的 OpenCV 例程200篇】70. 一维连续函数的傅里叶变换
【youcans 的 OpenCV 例程200篇】71. 连续函数的取样
【youcans 的 OpenCV 例程200篇】72. 一维离散傅里叶变换
【youcans 的 OpenCV 例程200篇】73. 二维连续傅里叶变换
【youcans 的 OpenCV 例程200篇】74. 图像的抗混叠
【youcans 的 OpenCV 例程200篇】75. Numpy 实现图像傅里叶变换
【youcans 的 OpenCV 例程200篇】76. OpenCV 实现图像傅里叶变换
【youcans 的 OpenCV 例程200篇】77. OpenCV 实现快速傅里叶变换
【youcans 的 OpenCV 例程200篇】78. 频率域图像滤波基础
【youcans 的 OpenCV 例程200篇】79. 频率域图像滤波的基本步骤
【youcans 的 OpenCV 例程200篇】80. 频率域图像滤波详细步骤
【youcans 的 OpenCV 例程200篇】81. 频率域高斯低通滤波器
【youcans 的 OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器
【youcans 的 OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复
【youcans 的 OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器
【youcans 的 OpenCV 例程200篇】85. 频率域高通滤波器的应用
【youcans 的 OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理
【youcans 的 OpenCV 例程200篇】87. 频率域钝化掩蔽
【youcans 的 OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波
【youcans 的 OpenCV 例程200篇】89. 带阻滤波器的传递函数
【youcans 的 OpenCV 例程200篇】90. 频率域陷波滤波器
【youcans 的 OpenCV 例程200篇】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【youcans 的 OpenCV 例程200篇】92. 指数噪声、均匀噪声、椒盐噪声
【youcans 的 OpenCV 例程200篇】93. 噪声模型的直方图
【youcans 的 OpenCV 例程200篇】94. 算术平均滤波器
【youcans 的 OpenCV 例程200篇】95. 几何均值滤波器
【youcans 的 OpenCV 例程200篇】96. 谐波平均滤波器
【youcans 的 OpenCV 例程200篇】97. 反谐波平均滤波器
【youcans 的 OpenCV 例程200篇】98. 统计排序滤波器
【youcans 的 OpenCV 例程200篇】99. 修正阿尔法均值滤波器
【youcans 的 OpenCV 例程200篇】100. 自适应局部降噪滤波器
【youcans 的 OpenCV 例程200篇】101. 自适应中值滤波器
【youcans 的 OpenCV 例程200篇】102. 陷波带阻滤波器的传递函数
【youcans 的 OpenCV 例程200篇】103. 陷波带阻滤波器消除周期噪声干扰
【youcans 的 OpenCV 例程200篇】104. 运动模糊退化模型
【youcans 的 OpenCV 例程200篇】105. 湍流模糊退化模型
【youcans 的 OpenCV 例程200篇】106. 退化图像的逆滤波
【youcans 的 OpenCV 例程200篇】107. 退化图像的维纳滤波
【youcans 的 OpenCV 例程200篇】108. 约束最小二乘方滤波
【youcans 的 OpenCV 例程200篇】109. 几何均值滤波
【youcans 的 OpenCV 例程200篇】110. 投影和雷登变换
【youcans 的 OpenCV 例程200篇】111. 雷登变换反投影重建图像
【youcans 的 OpenCV 例程200篇】112. 滤波反投影重建图像
【youcans 的 OpenCV 例程200篇】113. 形态学操作之腐蚀
【youcans 的 OpenCV 例程200篇】114. 形态学操作之膨胀
【youcans 的 OpenCV 例程200篇】115. 形态学操作之开运算
【youcans 的 OpenCV 例程200篇】116. 形态学操作之闭运算
【youcans 的 OpenCV 例程200篇】117. 形态学操作之顶帽运算
【youcans 的 OpenCV 例程200篇】118. 形态学操作之底帽运算
【youcans 的 OpenCV 例程200篇】119. 图像的形态学梯度
【youcans 的 OpenCV 例程200篇】120. 击中-击不中变换
【youcans 的 OpenCV 例程200篇】121. 击中-击不中用于特征识别
【youcans 的 OpenCV 例程200篇】122. 形态算法之边界提取
【youcans 的 OpenCV 例程200篇】123. 形态算法之孔洞填充
【youcans 的 OpenCV 例程200篇】124. 孔洞填充的泛洪算法
【youcans 的 OpenCV 例程200篇】125. 形态算法之提取连通分量
【youcans 的 OpenCV 例程200篇】126. 形态算法之凸壳
【youcans 的 OpenCV 例程200篇】127. 形态算法之细化
【youcans 的 OpenCV 例程200篇】128. 形态算法之骨架 (skimage)
【youcans 的 OpenCV 例程200篇】129. 形态算法之骨架 (重建开运算)
【youcans 的 OpenCV 例程200篇】130. 形态学之提取水平和垂直线
【youcans 的 OpenCV 例程200篇】131. 形态学重建之竖线字符提取
【youcans 的 OpenCV 例程200篇】132. 形态学重建之孔洞填充算法
【youcans 的 OpenCV 例程200篇】133. 形态学重建之边界清除
【youcans 的 OpenCV 例程200篇】134. 形态学重建之细胞计数
【youcans 的 OpenCV 例程200篇】135. 形态学重建之粒度测定
【youcans 的 OpenCV 例程200篇】136. 灰度腐蚀和灰度膨胀
【youcans 的 OpenCV 例程200篇】137. 灰度开运算和灰度闭运算原理
【youcans 的 OpenCV 例程200篇】138. 灰度开运算和灰度闭运算
【youcans 的 OpenCV 例程200篇】139. 灰度顶帽变换校正阴影
【youcans 的 OpenCV 例程200篇】140. 灰度底帽变换校正光照
【youcans 的 OpenCV 例程200篇】141. 灰度底帽变换的三维地形图
【youcans 的 OpenCV 例程200篇】142. 基于灰度形态学的图像平滑
【youcans 的 OpenCV 例程200篇】143. 基于灰度形态学的粒度测定
【youcans 的 OpenCV 例程200篇】144. 基于灰度形态学的纹理分割
【youcans 的 OpenCV 例程200篇】145. 形态学之边缘和角点检测
【youcans 的 OpenCV 例程200篇】146. 基于灰度形态学的复杂背景图像重建
【youcans 的 OpenCV 例程200篇】147. 图像分割之孤立点检测
【youcans 的 OpenCV 例程200篇】148. 图像分割之线检测

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/565602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数组顺序的移动

按照控制台的文本提示输入数组的长度,输入数组的元素,控制台会输出你输入的数组,然后会有文本提示让你输入移动的位数,当你输入之后,会重新输出移动之后的数组。 结果展示 代码演示 package com.three;import java.…

计算机设计大赛国奖作品_4. 界面设计

计算机设计大赛国奖作品_4. 界面设计 计算机设计大赛国奖作品_1. 项目概要 计算机设计大赛国奖作品_2. 报名材料 计算机设计大赛国奖作品_3. 需求分析 计算机设计大赛国奖作品_4. 界面设计 计算机设计大赛国奖作品_5. 核心算法 计算机设计大赛国奖作品_6. 测试报告 [计算机设计…

【youcans 的 OpenCV 例程200篇】149. 图像分割之边缘模型

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中 【youcans 的 OpenCV 例程200篇】149. 图像分割之边缘模型 2. 点、线和边缘检测 本节基于图像灰度的不连续性,讨论根据…

求数列1/3到1/n之和

求数列之和,数列从1/3开始,到1/n结束,当我们输入任意数x的时候,那么这个数列相加之和到1/x结束,控制台会输出数列之和。 求1/3到1/9数列之和 结果演示 代码演示 package com.four;import java.util.Scanner; publi…

【youcans 的 OpenCV 例程200篇】150. 边缘检测梯度算子

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中 【youcans 的 OpenCV 例程200篇】150. 边缘检测梯度算子 2. 点、线和边缘检测 本节基于图像灰度的不连续性,讨论根据灰…

计算字符串长度

字符串是任意类型任意数字组成的一段字符,那么我们如何计算此段字符串的长度呢??? 结果演示 代码演示 package com.four;import java.util.Scanner; public class Long {public static void main(String[] args) {Scanner inpu…

【youcans 的 OpenCV 例程200篇】151. 边缘检测中的平滑处理

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中 【youcans 的 OpenCV 例程200篇】151. 边缘检测中的平滑处理 2. 点、线和边缘检测 2.4 边缘检测的常用梯度算子 边缘检测的基本方…

排序 从小到大输出

根据控制台文本提示输入三个数字,控制台会按照从小到大的顺序输出。 结果演示 代码演示 package com.four;import java.util.Arrays; import java.util.Scanner; public class Paixu {public static void main(String[] args) {Scanner input new Scanner(Syste…

c语言uint32_使C语言实现面向对象的三个要素,你掌握了吗?

编排 | strongerHuang微信公众号 | strongerHuang不知道有多少人去了解过语言的发展史,早期C语言的语法功能其实比较简单。随着应用需求和场景的变化,C语言的语法功能在不断升级变化。虽然我们的教材有这么一个结论:C语言是面向过程的语言&am…

【youcans 的 OpenCV 例程200篇】152. 边缘检测之 LoG 算子

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中 【youcans 的 OpenCV 例程200篇】152. 边缘检测之 LoG 算子(Marr-Hildreth 算法) 2.5 LoG 边缘检测算子&…

【youcans 的 OpenCV 例程200篇】153. 边缘检测之 DoG 算子

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列,持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列,持续更新中 【youcans 的 OpenCV 例程200篇】153. 边缘检测之 DoG 算子 2.6 DoG 边缘检测算子 LoG 算子的计算量较大,可以通过数学…

目标检测_目标检测: AnchorFree 时代

本文转载自Smarter。自从2018年8月CornerNet开始,Anchor-Free的目标检测模型层出不穷,最近达到了井喷的状态,宣告着目标检测迈入了Anchor-Free时代。其实Anchor-Free并不是一个新概念了,大火的YOLO算是目标检测领域最早的Anchor-F…

热点地图

使用H5制作一个中国的热点地图&#xff0c;地图上标识出的地方会有波纹向四周散发的动态效果。 效果演示 代码演示 <!DOCTYPE html> <html xmlns"http://www.w3.org/1999/xhtml"><head><meta http-equiv"Content-Type" content&qu…

【youcans 的 OpenCV 例程200篇】154. 边缘检测之 Canny 算子

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列&#xff0c;持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列&#xff0c;持续更新中 【youcans 的 OpenCV 例程200篇】154. 边缘检测之 Canny 算子 2.7 Canny 边缘检测算法 Canny 算法希望在提高边缘的敏感性的同时抑…

段码液晶屏笔段电压范围_LCD段码(笔段)液晶显示屏和点阵液晶显示屏

液晶显示屏简称LCD屏&#xff0c;主要材料为液晶。液晶是一种有机材料&#xff0c;在特定温度范围内&#xff0c;既有液体流动性又有某些光学特性&#xff0c;其透明度和颜色随电场、磁场、光及温度等外界条件的变化而变化。液晶屏是一种被动式显示器件&#xff0c;液晶本身不会…

按规律插入一个数字到数组中

根据控制台的文本提示输入一个数&#xff0c;程序会把这个数按照规律插入到原来已经存在的数组中&#xff0c;并且会输出此数组。 结果演示 代码展示 package com.five;import java.util.Scanner;public class Crpx {public static Scanner input new Scanner(System.in);p…

【youcans 的 OpenCV 例程200篇】155. 边缘连接的局部处理方法

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列&#xff0c;持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列&#xff0c;持续更新中 【youcans 的 OpenCV 例程200篇】155. 边缘连接的局部处理方法 2.8 局部处理连接边缘 在实际应用中&#xff0c;由于噪声、光照等原…

【youcans 的 OpenCV 例程200篇】156. 边缘连接局部处理的简化算法

欢迎关注 『youcans 的 OpenCV 例程 200 篇』 系列&#xff0c;持续更新中 欢迎关注 『youcans 的 OpenCV学习课』 系列&#xff0c;持续更新中 【youcans 的 OpenCV 例程200篇】156. 边缘连接局部处理的简化算法 2.8 局部处理连接边缘 在实际应用中&#xff0c;由于噪声、光照…

矩阵对角线元素之和

根据控制台文本内容的提示输入9个数字&#xff0c;这九个数字将会组成一个3*3的矩阵&#xff0c;程序会计算出你输入的矩阵的对角线之和。 结果演示 代码演示 package com.five;import java.util.Scanner;public class Juzhen {public static Scanner input new Scanner(Sy…

mysql master-user_【MySQL】MySQL5.6数据库基于binlog主从(Master/Slave)同步安装与配置详解...

主从数据库同步原理image.png主从数据库同步工作原理(流程)&#xff1a;当主库的数据发生修改时&#xff0c;数据更改的记录将写入到主库的二进制文件中&#xff0c;从库此时将会调用一个IO线程读取主库的二进制文件&#xff0c;并与中继日志作对比&#xff0c;并将存在差异的事…