LoRA继任者ReLoRA登场,通过叠加多个低秩更新矩阵实现更高效大模型训练效果

论文链接: https://arxiv.org/abs/2307.05695
代码仓库: https://github.com/guitaricet/peft_pretraining

一段时间以来,大模型(LLMs)社区的研究人员开始关注于如何降低训练、微调和推理LLMs所需要的庞大算力,这对于继续推动LLMs在更多的垂直领域中发展和落地具有非常重要的意义。目前这一方向也有很多先驱工作,例如从模型结构上创新的RWKV,直接替换计算量较大的Transformer架构,改用基于RNN范式的新架构。还有一些方法从模型微调阶段入手,例如在原有LLMs中加入参数量较小的Adapter模块来进行微调。还有微软提出的低秩自适应(Low-Rank Adaptation,LoRA)方法,LoRA假设模型在任务适配过程中对模型权重的更新量可以使用低秩矩阵进行估计,因而可以用来间接优化新加入的轻量级适应模块,同时保持原有的预训练权重不变。目前LoRA已经成为大模型工程师必备的一项微调技能,但本文作者仍然不满足于目前LoRA所能达到的微调效果,并进一步提出了一种可叠加的低秩微调方法,称为ReLoRA

本文来自马萨诸塞大学洛厄尔分校的研究团队,作者团队将ReLoRA应用在具有高达350M参数的Transformer上时,展现出了与常规神经网络训练相当的性能。此外,本文作者还观察到ReLoRA的微调效率会随着模型参数规模的增加而不断提高,这使得其未来有可能成为训练超大规模(通常超过1B参数)LLMs的新型手段。

01. 引言

虽然目前学术界和工业界都在不断推出自家的各种基座模型,但不可否认的是,完全预训练一个具有初等推理能力的LLMs仍然需要非常庞大的算力,例如大家熟知的LLaMA-6B模型[1]就需要数百个GPU才能完成训练,这种规模的算力已经让绝大多数学术研究小组望而却步了。在这种背景下,参数高效微调(PEFT)已经成为了一个非常具有前景的LLMs研究方向。具体来说,PEFT方法可以在消费级GPU(例如RTX 3090或4090)上对十亿级语言或扩散模型进行微调。因此本文重点关注PEFT中的低秩训练技术,尤其是LoRA方法。作者思考到,过去十年中深度学习发展阶段中的一个核心原则就是不断的“堆叠更多层(stack more layers)”,例如ResNet的提出可以使我们将卷积神经网络的深度提升到100层以上,并且也获得了非常好的效果。因此本文探索能否同样以堆叠的方式来提升低秩适应的训练效率呢?

本文提出了一种基于低秩更新的ReLoRA方法,来训练和微调高秩网络,其性能优于具有相同可训练参数数量的网络,甚至能够达到与训练100M+规模的完整网络类似的性能,对比效果如上图所示。具体来说,ReLoRA方法包含(1)初始化全秩训练、(2)LoRA 训练、(3)参数重新启动、(4)锯齿状学习率调度(jagged learning rate schedule)和(5)优化器参数部分重置。作者选择目前非常火热的自回归语言模型进行实验,并且保证每个实验所使用的GPU计算时间不超过8天

02. 本文方法

ReLoRA通过序列叠加的方式仅训练一小组参数就可以实现与全秩训练相当的性能,并且遵循LoRA方法的基础原则,即保持原始网络的冻结权重并添加新的可训练参数。乍一看,这种方式可能显得计算效率低下,但我们需要清楚的是,这种方法可以通过减小梯度和优化器状态的大小,来显著提高显存效率。例如Adam优化器状态消耗的显存通常是模型权重占用的两倍。通过大幅减少可训练参数的数量,ReLoRA可以在相同的显存条件下使用更大的batchsize大小,从而最大限度地提高硬件效率,ReLoRA的整体操作细节如下图所示。

03. 实验效果

为了清晰的评估ReLoRA方法的性能,作者将其应用在各种规模大小(60M、130M、250M 和 350M)的Transformer模型上,并且都在C4数据集上进行训练和测试。为了展现ReLoRA方法的普适性,作者重点考察NLP领域的基础语言建模任务。模型架构和训练超参数设置基本与LLaMA模型保持一致。与LLaMA不同的是,作者在实验中将原始的注意力机制(使用float32进行 softmax计算)替换为了Flash注意力[2],并且使用bfloat16精度进行计算,这样操作可以将训练吞吐量提高50-100%,且没有任何训练稳定性问题。此外,使用ReLoRA方法训练的模型参数规模相比LLaMA要小得多,最大的模型参数才仅有350M,使用8个RTX4090上训练了一天时间就可以完成。

下图展示了本文方法与其他方法的性能对比效果,可以看到ReLoRA显着优于低秩LoRA方法,证明了我们提出的修改的有效性。此外,ReLoRA还实现了与满秩训练(Full training)相当的性能,并且我们可以观察到,随着网络规模的增加,性能差距逐渐缩小。有趣的是,ReLoRA 唯一无法超过的基线模型是仅具有60M参数的最小模型。这一观察结果表明,ReLoRA在改进大型网络的训练方面更加有效,这与作者最开始研究探索一种改进大型网络训练方法的目标是一致的。

04. 总结

本文是一篇专注于减轻大型Transformer语言模型训练代价的工作,作者选取了一条非常具有前景的方向,即低秩训练技术,并且从最朴素的低秩矩阵分解 (LoRA) 方法出发,利用多个叠加的低秩更新矩阵来训练高秩网络,为了实现这一点,作者精心设计了包含参数重新启动、锯齿状学习率调度算法和优化器参数重置等一系列操作,这些操作共同提高了ReLoRA算法的训练效率,在某些情况下甚至能够达到与全秩训练相当的性能,尤其实在超大规模的Transformer网络中。作者通过大量的实验证明了ReLoRA的算法可行性和操作有效性,不知ReLoRA是否也会成为大模型工程师一项必备的算法技能呢?

参考

[1] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[2] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Re. Flashattention: Fast and memory-efficient exact attention with IO-awareness. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural
Information Processing Systems, 2022.


  关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55221.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LRU cache的实现细节优化——伪结点的技巧

LRU cache的实现是面试常见的题目,思路比较简单,可以参考思路 这个题目在实际面试中容易出错,主要是npe和头节点与尾节点的更新,有没有办法避免这一点呢,这时可以发现伪节点的好处,永远不用更新头尾节点&am…

什么是异步编程?什么是回调地狱(callback hell)以及如何避免它?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 异步编程⭐ 回调地狱(Callback Hell)⭐ 如何避免回调地狱1. 使用Promise2. 使用async/await3. 模块化和分离 ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订…

前端需要理解的浏览器知识

1 浏览器架构 浏览器是多进程多线程的应用程序,多进程可以避免相互影响和减少连环崩溃的几率: 浏览器(主)进程:主要负责界⾯显示、⽤户交互、⼦进程管理、存储等功能。内部会启动多个线程分别处理不同的任务。⽹络进…

pandas由入门到精通-数据清洗-缺失值处理

pandas-02-数据清洗&预处理 A.缺失值处理1. Pandas缺失值判断2. 缺失值过滤2.1 Series.dropna()2.2 DataFrame.dropna()3. 缺失值填充3.1 值填充3.2 向前/向后填充文中用S代指Series,用Df代指DataFrame 数据清洗是处理大型复杂情况数据必不可少的步骤,这里总结一些数据清…

(unity/c#)反射为类赋值小工具

string参数为需要修改的变量,dynamic需要一个int/float数值,将从playvalue类中检索对应变量修改数值 public static class playerValue{public static int MeleeDMG;//近战伤害public static int RangedDMG;//远程伤害public static int MagicDMG;//魔法伤害public static int …

安卓图形显示系统

Android图形显示系统 Android图形显示系统是Android比较重要的一个子系统,和很多其他子系统的关联紧密。 Android图形系统比较复杂,这里我们从整体上理一遍,细节留待后期再去深入。Android图形系统主要包括以下几个方面: - 渲染…

玩转git第7章节,本地git的用户名和密码的修改

一 本地git的用户名和密码 1.1 本地用户名和密码修改 1.本地用户名修改 2.凭据管理 3.进行修改密码 1.2 代码提交操作

配置Flume

配置Flume_1.9.0 1.配置Flume2.Flume案例 链接: Flume官网 链接: Flume文档 链接: Flume下载 1.配置Flume tar -zxf /opt/software/apache-flume-1.9.0-bin.tar.gz -C /opt/module/ mv /opt/module/apache-flume-1.9.0-bin /opt/module/flume-1.9.0 #将lib 文件夹下的 guava-…

206. 反转链表 (简单系列)

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 示例 2: 输入:head [1,2] 输出:[2,1] 示例 3: 输…

centos用ssh登录连接缓慢处理

问题现象 用ssh登录服务器,发现登录缓慢,登录一次可能需要30秒左右 问题原因及解决 连接慢的主要原因是DNS解析导致 1)、在ssh服务端上更改/etc/ssh/sshd_config文件中的配置为如下内容: UseDNS no 2)、执行sudo systemctl res…

LINUX系统下ORACLE19C客户端安装步骤

服务器系统版本:CentOS 7.4 Oracle客户端安装包(19C版本)下载地址: https://www.oracle.com/database/technologies/instant-client/linux-x86-64-downloads.html 现阶段19c版本已下载完毕,上传至服务器;…

ESP32-CAM过程中踩的坑总结

1. 通过usb连接电脑后,端口中没有增加COM口,显示“windows无法安装usb2.0-ser”,usb2.0-ser图标带有红色感叹号。 解决方法:下载相应的驱动,参考如下。 https://blog.csdn.net/qq_40984972/article/details/10507602…

记录一次微服务连接Nacos异常-errorMsg: Illegal character in authority at index 7:

组件信息 Nacos 2.2.3 SpringCloud微服务 部署环境:centerOS 部署方式:k8s 前言 nacos开启鉴权,nacos地址通过变量方式传入服务中 PropsUtil.setProperty(props, "spring.cloud.nacos.discovery.server-addr", "${NACO…

Java将PDF文件转为Word文档

Java将PDF文件转为Word文档 一、创建Springboot Maven项目 二、导入依赖信息 <repositories><repository><id>com.e-iceblue</id><url>https://repo.e-iceblue.cn/repository/maven-public/</url></repository></repositories&g…

8.25 校招 内推 面经

绿泡泡&#xff1a; neituijunsir 交流裙&#xff0c;内推/实习/校招汇总表格 1、校招&实习 丨驭势科技 校招&实习 全面开启&#xff08;内推&#xff09; 校招&实习 丨驭势科技 校招&实习 全面开启&#xff08;内推&#xff09; 2、2023校招总结--自动驾驶…

std::dynamic_pointer_cast转换shared_ptr

std::dynamic_pointer_cast 是 C 标准库中的一个函数模板&#xff0c;用于在共享指针之间进行动态类型转换。它允许将一个指向基类的 std::shared_ptr 转换为指向派生类的 std::shared_ptr。 使用 std::dynamic_pointer_cast 的方法如下&#xff1a; #include <memory>…

【AI】解决Number_Words的安装和使用

It appears that you encountered an error while trying to install the “Numbers_Words” package using the specific version 0.18.2 of the PEAR channel. The error message indicates that there was a problem unpacking the “Math_BigInteger-1.0.3” package, whi…

Postman测WebSocket接口

01、WebSocket 简介 WebSocket是一种在单个TCP连接上进行全双工通信的协议。 WebSocket使得客户端和服务器之间的数据交换变得更加简单&#xff0c;允许服务端主动向客户端推送数据。在WebSocket API中&#xff0c;浏览器和服务器只需要完成一次握手&#xff0c;两者之间就直…

NodeJS系列教程、笔记

NodeJS系列教程、笔记 点我进入专栏 Node.js安装与基本使用 NodeJS的Web框架Express入门 Node.js的sha1加密 Nodejs热更新 Nodejs配置文件 Nodejs的字节操作&#xff08;Buffer&#xff09; Node.js之TCP&#xff08;net&#xff09; Node.js使用axios进行web接口调用 …

浅谈Python网络爬虫应对反爬虫的技术对抗

在当今信息时代&#xff0c;数据是非常宝贵的资源。而作为一名专业的 Python 网络爬虫程序猿&#xff0c;在进行网页数据采集时经常会遭遇到各种针对爬虫行为的阻碍和限制&#xff0c;这就需要我们掌握一些应对反爬机制的技术手段。本文将从不同层面介绍如何使用 Python 进行网…