数据结构队列的实现

在这里插入图片描述
本章介绍数据结构队列的内容,我们会从队列的定义以及使用和OJ题来了解队列,话不多说,我们来实现吧

队列

1。队列的概念及结构
队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出
FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头。
我们来看一下下面的这张图,让我们更好的理解它
在这里插入图片描述
我们从队尾入,队头出,只能是这样入栈和出栈

2。队列的实现
队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数
组头上出数据,效率会比较低。

那队列的实现我们是用链式结构来实现的,因为用数组下标的话,出栈的时候要往前挪动数据,会更麻烦,这样队列的意义就下降了,所以我们这里用的方法是链式结构。

typedef int QueueDataType;
typedef struct QueueNode
{QueueDataType* next;QueueDataType data;
}QueueNode;typedef struct Queue
{QueueDataType* head;QueueDataType* tail;
}Queue;

这里我们定义的结构体Queue有很大的作用,因为队列不是像单链表那样,队列是有它的特点的,其中最大的一个特点就是入栈只能从尾入,出栈就是头出,所以我们在这里定义head和tail有很大的作用,定义在结构体当中会方便不少,那我们现在继续往下看我们的接口函数吧。

给大家看一下下面实现队列的接口函数,然后我们一步一步的来实现他们

// 初始化队列
void QueueInit(Queue* q);
// 队尾入队列
void QueuePush(Queue* q, QueueDataType data);
// 队头出队列
void QueuePop(Queue* q);
// 获取队列头部元素
QueueDataType QueueFront(Queue* q);
// 获取队列队尾元素
QueueDataType QueueBack(Queue* q);
// 获取队列中有效元素个数
int QueueSize(Queue* q);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
bool QueueEmpty(Queue* q);
// 销毁队列
void QueueDestroy(Queue* q);

队列的初始化

void QueueInit(Queue* q); 

初始化我们初始的是结构体Queue中的内容

void QueueInit(Queue* q)
{assert(q);q->head = q->tail = NULL;
}

首先要判断传过来的指针是否是为空,然后将头指针和尾指针都置为NULL。

销毁队列

void QueuePush(Queue* q, QueueDataType data)

首先我们要创造一个节点将它放入,创造节点的结构体就是QueueNode,然后我们要更新后面节点中的head和tail,这里大家肯定有疑问,我们竟然是更新指针,那我们应该传指针的地址才能起到作用,一级指针只能改变结构体的内容,那我们在这里传的话,难道不会产生问题吗?答案是不会,我们的结构体中放的就是指针,那我们只需要改变结构体的内容,就是head和tail就行,竟然是这样的话,我们传一个一级指针就可以起到我们的作用,所以传的是一级,那现在我们在插入函数中先创造一个节点,因为只能从队列的尾插入,而且有了这个指针,我们就不需要像单链表那样再去找尾,我们每次插入都会更新尾。

void QueuePush(Queue* q, QueueDataType data)
{assert(q);QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));if (newnode == NULL){printf("malloc fail\n");exit(-1);}newnode->data = data;newnode->next = NULL;if (q->head == NULL){q->head = q->tail = newnode;}else{q->tail->next = newnode;q->tail = newnode;}
}

有了入栈就有出栈,出栈的话是从我们的队列最开始的地方出队,我们来实现一下吧!

void QueuePop(Queue* q)
{assert(q);assert(!QueueEmpty(q));QueueNode* headnext = q->head->next;free(q->head);q->head = headnext;}
/

这里的空是因为如果我们的队列都是空的话,我们哪里还有数据进行删除呢
所以要先检查一下是不是为空,那接着我们把这个函数也实现一下吧

bool QueueEmpty(Queue* q)
{assert(q);return q->head == NULL;
}

这个很好理解,如果为空就代表一个数也没有,那我们就不能再对队列进行操作了,那再来看我们下面的接口函数吧。

// 获取队列头部元素
QueueDataType QueueFront(Queue* q)
{assert(q);return q->head->data;
}

有头就有尾,希望我们的人生也是
那我再来实现一下取尾的接口吧

QueueDataType QueueBack(Queue* q)
{assert(q);return q->tail->data;
}

我们继续往下走,实现一下我们后面的接口函数,这些基本上都很简单,我就也不再解释了,看代码就能理解的

int QueueSize(Queue* q)
{assert(q);int count = 0;QueueNode* cur = q->head;while (cur){count++;cur = cur->next;}return count;
}

销毁队列

void QueueDestroy(Queue* q)
{while (!QueueEmpty(q)){QueueNode* headnext = q->head->next;free(q->head);q->head = headnext;}}

统计我们队列节点的数量我们遍历一遍就可以实现了,定义一个cur指针进行遍历,那其他的我们也都讲完了,后面分享栈和队列的OJ题给大家,看完之后对队列有了更深的理解

完整代码

#include"Queue.h"// 初始化队列
void QueueInit(Queue* q)
{assert(q);q->head = q->tail = NULL;
}
// 队尾入队列
void QueuePush(Queue* q, QueueDataType data)
{assert(q);QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));if (newnode == NULL){printf("malloc fail\n");exit(-1);}newnode->data = data;newnode->next = NULL;if (q->head == NULL){q->head = q->tail = newnode;}else{q->tail->next = newnode;q->tail = newnode;}
}
// 队头出队列
void QueuePop(Queue* q)
{assert(q);assert(!QueueEmpty(q));QueueNode* headnext = q->head->next;free(q->head);q->head = headnext;}
// 获取队列头部元素
QueueDataType QueueFront(Queue* q)
{return q->head->data;
}
// 获取队列队尾元素
QueueDataType QueueBack(Queue* q)
{return q->tail->data;
}
// 获取队列中有效元素个数
int QueueSize(Queue* q)
{assert(q);int count = 0;QueueNode* cur = q->head;while (cur){count++;cur = cur->next;}return count;
}
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
bool QueueEmpty(Queue* q)
{assert(q);return q->head == NULL;
}
// 销毁队列
void QueueDestroy(Queue* q)
{while (!QueueEmpty(q)){QueueNode* headnext = q->head->next;free(q->head);q->head = headnext;}}

#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>typedef int QueueDataType;
typedef struct QueueNode
{QueueDataType* next;QueueDataType data;
}QueueNode;typedef struct Queue
{QueueDataType* head;QueueDataType* tail;
}Queue;// 初始化队列
void QueueInit(Queue* q);
// 队尾入队列
void QueuePush(Queue* q, QueueDataType data);
// 队头出队列
void QueuePop(Queue* q);
// 获取队列头部元素
QueueDataType QueueFront(Queue* q);
// 获取队列队尾元素
QueueDataType QueueBack(Queue* q);
// 获取队列中有效元素个数
int QueueSize(Queue* q);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
bool QueueEmpty(Queue* q);
// 销毁队列
void QueueDestroy(Queue* q);

今天的分享就到这里了,我们下次再见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54779.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

centos7搭建apache作为文件站后,其他人无法访问解决办法

在公司内网的一个虚拟机上搭建了httpsd服务&#xff0c;准备作为内部小伙伴们的文件站&#xff0c;但是搭建好之后发现别的小伙伴是无法访问我机器的。 于是寻找一下原因&#xff0c;排查步骤如下&#xff1a; 1.netstat -lnp 和 ps aux 先看下端口和 服务情况 发现均正常 2.…

在 Python 中将数据类转换为 JSON

文章目录 在 Python 中将数据类转换为 JSON在 Python 中将数据类实现为字典在 Python 中为每个 JSON 根节点创建一个数据类 在本篇文章中&#xff0c;我们将了解 Python 如何支持 JSON 来为每个 JSON 根节点创建数据类。 我们还将学习 dataclass 作为 Python 字典的实现。 在 P…

目标检测任务数据集的数据增强中,图像水平翻转和xml标注文件坐标调整

需求&#xff1a; 数据集的数据增强中&#xff0c;有时需要用到图像水平翻转的操作&#xff0c;图像水平翻转后&#xff0c;对应的xml标注文件也需要做坐标的调整。 解决方法&#xff1a; 使用pythonopencvimport xml.etree.ElementTree对图像水平翻转和xml标注…

设计模式-工厂设计模式

核心思想 在简单工厂模式的基础上进一步的抽象化具备更多的可扩展和复用性&#xff0c;增强代码的可读性使添加产品不需要修改原来的代码&#xff0c;满足开闭原则 优缺点 优点 符合单一职责&#xff0c;每个工厂只负责生产对应的产品符合开闭原则&#xff0c;添加产品只需添…

Qt中设置QListWidget滑动条滚动速度

QListWidget继承QListView控件&#xff0c;Qt帮助文档中说 QAbstractItemView::ScrollPerPixel 和QAbstractItemView::ScrollPerItem分别可以实现按item滚动和像数点滚动&#xff0c;但是好像都没效果。还有就是说通过创建QScrollBar有用&#xff0c;但是也没效果。 亲测还是这…

探讨uniapp的路由与页面生命周期问题

1 首先我们引入页面路由 2 页面生命周期函数 onLoad() {console.log(页面加载)},onShow() {console.log(页面显示)},onReady(){console.log(页面初次显示)},onHide() {console.log(页面隐藏)},onUnload() {console.log(页面卸载)},onBackPress(){console.log(页面返回)}3 页面…

【python编程基础】字符串、列表、元组与字典

1-字符串的答应 name xiaoming position 讲师 address 河北大学print(--------------------------------------------------) print("姓名&#xff1a;%s"%name) print("职位&#xff1a;%s"%position) print("地址&#xff1a;%s"%address)…

代码随想录算法训练营之JAVA|第三十九天|474. 一和零

今天是第39天刷leetcode&#xff0c;立个flag&#xff0c;打卡60天。 算法挑战链接 474. 一和零https://leetcode.cn/problems/ones-and-zeroes/ 第一想法 题目理解&#xff1a;找到符合条件的子集&#xff0c;这又是一个组合的问题。 看到这个题目的时候&#xff0c;我好像…

JAVA学习-愚见

JAVA学习-愚见 分享一下Java的学习路线&#xff0c;仅供参考【本人亲测&#xff0c;真实有效】 1、尽可能推荐较新的课程 2、大部分视频在B站上直接搜关键词就行【自学&#xff0c;B大的学生】 文章目录 JAVA学习-愚见前期准备Java基础课程练手项目 数据库JavaWeb前端基础 Vue…

学习设计模式之观察者模式,但是宝可梦

前言 作者在准备秋招中&#xff0c;学习设计模式&#xff0c;做点小笔记&#xff0c;用宝可梦为场景举例&#xff0c;有错误欢迎指出。 观察者模式 观察者模式定义了一种一对多的依赖关系&#xff0c;一个对象的状态改变&#xff0c;其他所有依赖者都会接收相应的通知。 所…

匈牙利算法 in 二分图匹配

https://www.luogu.com.cn/problem/P3386 重新看这个算法&#xff0c;才发现自己没有理解。 左边的点轮流匹配&#xff0c;看是否能匹配成功。对右边的点进行记录是否尝试过 然后有空就进&#xff0c;别人能退的就进 遍历左部点&#xff1a; 尝试匹配过程&#xff1a;

double类型的数值是否相等

由于浮点数double类型的精度问题&#xff0c;直接使用相等运算符 会导致不准确的结果。为了更准确地比较 double 类型的数值&#xff0c;可以使用以下方法&#xff1a; 方法一&#xff1a; 使用一个误差范围&#xff1a;定义一个小的误差范围&#xff0c;将两个数值的差值与该…

[C++] STL_vector 迭代器失效问题

文章目录 1、前言2、情况一&#xff1a;底层空间改变的操作3、情况二&#xff1a;指定位置元素的删除操作4、g编译器对迭代器失效检测4.1 扩容4.2 erase删除任意位置&#xff08;非尾删&#xff09;4.3 erase尾删 5、总结 1、前言 **迭代器的主要作用就是让算法能够不用关心底…

DataWhale 机器学习夏令营第三期——任务二:可视化分析

DataWhale 机器学习夏令营第三期 学习记录二 (2023.08.23)——可视化分析1.赛题理解2. 数据可视化分析2.1 用户维度特征分布分析2.2 时间特征分布分析 DataWhale 机器学习夏令营第三期 ——用户新增预测挑战赛 学习记录二 (2023.08.23)——可视化分析 2023.08.17 已跑通baseli…

【笔记】判断两个Double类型的值是否相同

在Java中&#xff0c;将两个double值转换为String类型&#xff0c;然后使用equals方法进行比较是一个常见的做法&#xff0c;但是这种方法并不是完全可靠&#xff0c;特别是在涉及浮点数的精度时仍然可能会遇到问题。 浮点数在内部以二进制表示&#xff0c;有时会存在舍入误差…

Android沉浸式实现(记录)

沉浸式先看效果 直接上代码 Android manifest文件 android:theme"style/Theme.AppCompat.NoActionBar"布局文件 <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"ht…

mit s0681 lab2 Trace系统调用实现

实验一 实现一个用户级别的程序&#xff0c;功能为&#xff0c;指定系统调用后&#xff0c;跟踪程序的系统调用情况 分析实验 实验目标为实现一个程序去跟踪指定程序的系统调用。因此目标有两个 实现一个程序跟踪目标程序的系统调用 实现1&#xff0c;就需要在用户这边实…

4.18 TCP 和 UDP 可以使用同一个端口吗?

目录 TCP 和 UDP 可以同时绑定相同的端口吗&#xff1f; 多个 TCP 服务进程可以绑定同一个端口吗&#xff1f; 重启 TCP 服务进程时&#xff0c;为什么会有“Address in use”的报错信息&#xff1f; 重启 TCP 服务进程时&#xff0c;如何避免“Address in use”的报错信息…

HarmonyOS/OpenHarmony应用开发-ArkTS语言渲染控制LazyForEach数据懒加载

LazyForEach从提供的数据源中按需迭代数据&#xff0c;并在每次迭代过程中创建相应的组件。当LazyForEach在滚动容器中使用了&#xff0c;框架会根据滚动容器可视区域按需创建组件&#xff0c;当组件划出可视区域外时&#xff0c;框架会进行组件销毁回收以降低内存占用。一、接…

智驾算力芯片市场仍处于「波动」周期,Momenta曝光自研NPU

用「冷热不均」来形容当下的汽车芯片赛道&#xff0c;再合适不过了。 本周&#xff0c;英伟达公布的第二财季&#xff08;5-7月&#xff09;营收达到创纪录的135亿美元&#xff0c;大幅超出了此前市场普遍预期的略高于110亿美元&#xff0c;同比增速更是达到了101%。 其中&…