从0开始做yolov5模型剪枝

文章目录

  • 从0开始做yolov5模型剪枝 **·**
    • 1 前言
    • 2 GitHub取源码
    • 3 原理
      • 3.1 原理
      • 3.2 network slimming过程
    • 4 具体实施步骤
      • 4.1 安装虚拟环境
      • 4.2 配置参数
        • 4.2.1 数据集参数
        • 4.2.2 模型结构参数
        • 4.2.3 train.py中的参数
      • 4.3 正常训练
        • 4.3.1 准备
        • 4.3.2 训练及问题解决
      • 4.4 稀疏化训练
        • 4.4.1 参数设置
        • 4.4.2 稀疏化训练与问题
      • 4.5 剪枝
        • 4.5.1 参数设置
        • 4.5.2 剪枝
      • 4.6 finetune剪枝的网络
        • 4.6.1 参数设置
        • 4.6.2 finetune
      • 4.7 循环稀疏训练->剪枝->finetune网络

从0开始做yolov5模型剪枝 ·

1 前言

【整个流程中,在正常train,sparityTrain,prune,finetune遇到10多个的问题,包括AttributeError、ModuleNotFoundError、RuntimeError、SyntaxError、TypeError等问题的解决方法,详见内容】

为了将现有模型移植到ARM平台,同时保证模型准确率的基础上,减少模型的算力消耗和推理时间。

之前有做实验对比了YOLOv5、 YOLOv7、 YOLOv8,结合不同版本模型推理时间和准确率,并查了很多资料,包括大部分人博客描述,结合大部分人经验,我们觉的yolov5的泛化能力较好。故在考虑训练自己的模型且在X86和ARM平台上部署,我们针对yolov5做模型的训练和剪枝,以便轻量化小模型的部署。

当然,我们还需要对最终的模型执行INT8量化的操作,以便降低目标检测的推理时间。

2 GitHub取源码

下载如下路径的源码:

https://github.com/midasklr/yolov5prune/tree/v6.0

本文为 上面GitHub上取6.0的版本做剪枝

3 原理

【根据一些博客/文章对yolov5剪枝的介绍,简单总结一下yolov5模型剪枝的原理】

3.1 原理

原理论文:Learning Efficient Convolutional Networks through Network Slimming

ref: Pruning Filters for Efficient ConvNets( https://arxiv.org/abs/1608.08710 )

ref: https://blog.csdn.net/qq_42835363/article/details/129125376?spm=1001.2014.3001.5501

ref: https://blog.csdn.net/IEEE_FELLOW/article/details/117236025

ref: Yolov5_5.0上做模型剪枝

输入经过BN(Batch Normalization)层获得归一化后的分布。BN层存在两个可训练参数γ(gamma)、β(beta)。

当gamma和betaγ趋于0时,输入相当于乘以了0,此时该channel上的卷积将输出0,这是无意义的。因此,可以认为剔除这样冗余的channel对模型性能没有影响。

普通网络训练时,由于初始化,gamma一般分布在1附近。为了使gamma趋于0,可以通过添加L1正则来约束,使得系数稀疏化。论文中把添加gammaL1正则的训练称为稀疏训练。

稀疏训练后,裁剪掉稀疏很小的层,对应激活也很小,所以对后面的影响非常小,反复迭代这个过程,可以获得小型的模型,步骤如图1。

在这里插入图片描述

图1

3.2 network slimming过程

① 先初始化网络,对BN层的参数添加L1正则并对网络训练。

② 统计网络中的γ(gamma),设置剪枝率对网络进行裁剪。

③ 将裁减完的网络finetune,完成剪枝工作。

4 具体实施步骤

4.1 安装虚拟环境

解压下载的源码,进入yolov5prune_6.0目录下,依次执行下面的操作

# 1 创建虚拟环境
conda create -n yolov5prune
# 2 激活虚拟环境
conda activate yolov5prune
# 3 安装虚拟环境(根据yolov5prune_6.0根目录下的requirements.txt安装)
pip install -r requirements.txt

4.2 配置参数

4.2.1 数据集参数

自己的数据集结构如下

--datasTrain
------images
----------train     	# 存放训练数据集的图片(.jpg)
----------val
----------test
------labels
----------train			# 存放训练图片对应的标签文件(.txt)
----------val
----------tes

在/yolov5prune_6.0/data/目录下,仿照coco128.yaml中的结构创建my_yolov5.yaml文件。其中内容如下

# Train/val/test sets as 
# 1) dir: path/to/imgs, 
# 2) file: path/to/imgs.txt, or 
# 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /home/user/hlj/MyTrain/datasTrain3_More/  # dataset root dir
train: images/train/  # train images (relative to 'path') 128 images
val: images/val/      # val images (relative to 'path') 128 images
test:  images/test/   # test images (optional)nc: 11  # number of classes
names: ['pedes', 'car', 'bus', 'truck', 'bike', 'elec', 'tricycle', 'coni', 'warm', 'tralight', 'specVehi']

4.2.2 模型结构参数

修改yolov5prune_6.0/models/yolov5s.yaml中的目标检测类型,使其适配自己数据集的目标检测类型数量。如下

nc: 11

4.2.3 train.py中的参数

设置train.py中的参数,主要包括如下:

'--weights', default='./yolov5s.pt'  # 由于我要从头训练,所以注释了此参数
'--cfg', default='./models/yolov5s.yaml'
'--data', default='./data/my_yolov5.yaml'
'--epochs', default=300 		# 由于从头训练,所以epochs值设的比较大
'--batch-size', default=-1
'--imgsz', default=640			# 考虑部署

4.3 正常训练

4.3.1 准备

由于我是SSH链接,所以先创建/打开tmux会话

tmux new -s prunesession

若【先按下ctrl+b,然后再单独按d】退出会话的话,下次再进入会话,需要使用命令

tmux a -t prunesession

进入会话,先进入项目目录下,并激活虚拟环境(若已激活,可忽略)

cd ../yolov5prune_6.0/
source activate yolov5prune

训练结束之后要删除会话

tmux kill-session -t prunesession

4.3.2 训练及问题解决

执行如下命令,进行训练

python3 train.py

【问题1】

运行train.py文件后,报了如下错误

ModuleNotFoundError: No module named 'utils.loggers.wandb'

提示缺包,根据别人的攻略,下载U神对应yolov5_6.0版本的代码,然后把yolov5_6.0\utils\loggers\目录下的整个wandb文件夹拷贝到yolov5prune_6.0\utils\loggers目录下。

【问题2】

重新输入 python3 train.py 后,报如下问题,由此可见,设置train.py中的参数的时候,'–weights’参数不可以被注释掉。

AttributeError: 'Namespace' object has no attribute 'weights'

故将’weights’参数设置如下,表示不使用预训练权重,模型将从头开始训练。

'--weights', default=''

【问题3】

不知道为什么,ubuntu上又报了一个numpy的问题如下,本地运行是没有这个问题的

raise AttributeError(__former_attrs__[attr])
AttributeError: module 'numpy' has no attribute 'int'.

原来是因为 新版本的numpy里面没有np.int,可以修改源码解决。

修改yolov5prune_6.0/utils/ 目录下datasets.py中所有的…astype(np.int) 为 …astype(int),如下所示:

441  bi = np.floor(np.arange(n) / batch_size).astype(int)  # batch index
483  self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
854  b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)

修改yolov5prune_6.0/utils/ 目录下general.py中所有的…astype(np.int) 为 …astype(int),如下所示:

510  classes = labels[:, 0].astype(int)  # labels = [class xywh]
525  class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])

【问题4】

File "/home/user/hlj/MyTrain/yolov5prune_6.0/utils/loss.py", line 217, in build_targets
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) 
RuntimeError: result type Float can't be cast to the desired output type long int

参考 ref: https://blog.csdn.net/Thebest_jack/article/details/125649451 执行如下操作:

修改yolov5prune_6.0/utils/ 目录下loss.py源码,

#(1) 183行左右
for i in range(self.nl):anchors, shape = self.anchors[i], p[i].shape   # anchors = self.anchors[i]gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain
#(2)218行后
# indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  
上一行代码改为如下
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, anchor, grid indices            

【问题5】

epoch的时候,报如下问题

File "..../yolov5prune_6.0/utils/plots.py", line 116, in text
w, h = self.font.getsize(text)  # text width, height
AttributeError: 'FreeTypeFont' object has no attribute 'getsize'

这是因为安装了新版本的 Pillow,pip install tf-models-official删除了该getsize功能
,降级到 Pillow 9.5 解决了该问题。可以尝试以下方法进行解决,参见【问题8】:

pip install Pillow==9.5

【问题6】

epoch 0 结束,val结束后,报如下问题

File ".....\yolov5prune_6.0\utils\callbacks.py", line 77, in runlogger['callback'](*args, **kwargs)
TypeError: on_fit_epoch_end() missing 1 required positional argument: 'fi'

找一下官方源码,把yolov5_6.0/utils/下的整个loggers文件复制进去,应该就行了,可能是版本不一致导致的。

【问题7】

yolov5prune_6.0/utils/general.py line471
return re.sub(pattern="[|@#!?·$€%&()=??^*;:,¨′><+]", repl="_", string=s)
SyntaxError:(unicoda error)'utf-8' code can't decode byte 0xal in position 6: invalid start byte。 

应该是’utf-8’ code不支持的问题,添加了下面的编码格式,但最后也没解决。看了一下对应函数的功能,只是为了清理字符串(用下划线替代特殊字符),所以就直接改了那一行的代码,对整个程序是没有影响的。

# -*- coding: utf-8 -*-

【总结】

虽然各种问题不断,而且【问题5】我也没管它 但是,最后总算是python3 train.py正常跑起来了。

4.4 稀疏化训练

4.4.1 参数设置

对train_sparity.py的参数进行设置

'--st', action='store_true',default=True,
'--sr', type=float, default=0.0001,
'--weights', type=str, default=ROOT / '',
'--cfg', type=str, default='./models/yolov5s.yaml',
'--data', type=str, default='./data/my_yolov5.yaml',
'--epochs', type=int, default=300
'--batch-size', type=int, default=-1,   # 注意【问题8】的发生
'--imgsz', '--img', '--img-size', type=int, default=640,
'--adam', action='store_true', default=True, 

4.4.2 稀疏化训练与问题

执行如下命令,进行稀疏化训练

python train_sparity.py

在这里插入图片描述

【问题8】

loggers.on_params_update({"batch_size": batch_size})
AttributeError: 'Loggers' object has no attribute 'on_params_update'

貌似是autobatch的原因,所以把参数’–batch-size’, type=int, default=-1, 先改为固定值 default=2,此后,可以正常epoch0。但是仍然存在【问题5】的问题,虽然不影响训练,但是觉的还是应该把它解决,毕竟是AttributeError的问题。解决办法如下:

# pillow版本太新的原因,新版的getsize属性被删除掉了。
pip3 uninstall pillow
pip3 nstall pillow==9.5

【问题9】

Epoch0的val结束之后,报了如下问题

File "/home/user/hlj/MyTrain/yolov5prune_6.0/utils/callbacks.py", line 77, in run
logger['callback'](*args, **kwargs)
TypeError: Loggers.on_fit_epoch_end() takes 5 positional arguments but 6 were given

这个问题是由于自己为了解决【问题6】,把项目中的utils/loggers/init .py文件换成了官方的文件了,发现init.py文件中def on_fit_epoch_end(self, vals, bn_weights, epoch, best_fitness, fi)少bn_weights,在这个项目中把prune项目下这个文件重新拷贝一下好了。

4.5 剪枝

4.5.1 参数设置

​ 设置裁剪比例参数,可以从小到大试。注意cfg的模型文件需要和weights对应上,否则会出现运行prune 过程中出现键值不对应的问题,裁剪完成会保存对应的模型pruned_model.pt。

在prune.py文件中,修改如下参数

'--data', type=str, default=ROOT / 'data/my_yolov5.yaml',
'--weights', nargs='+', type=str, default=ROOT / 'runs/train/spaweight/last.pt'
'--cfg', type=str, default='./models/yolov5s.yaml',
'--percent', type=float, default=0.1,
'--batch-size', type=int, default=16, 
'--imgsz', '--img', '--img-size', type=int, default=640,

运行

python prune.py

【问题10】

SyntaxError: Non-UTF-8 code starting with '\xe5' in file /home/user/hlj/MyTrain/yolov5prune_6.0/prune.py on line 400, but no encoding declared; see https://peps.python.org/pep-0263/ for details

解决方法:找到对应的行,发现是注释的内容code的格式的问题,把它删掉或者把中文改成英文即可。

【问题11】

return func(*args, **kwargs)
TypeError: run() got an unexpected keyword argument 'cfg'

解决方式在prune.py的源码run()函数中,增加参数如下

cfg = './model/yolov5s.yaml'

4.5.2 剪枝

对稀疏化训练后的模型best.pt进行剪枝。

若参数已设置好了,直接执行python prune.py

python prune.py

否则,传入的weight为稀疏化训练得到的权重。

python prune.py --weights runs/train/exp_sparity/weights/best.pt --percent 0.5 --cfg models/yolov5s.yaml

裁剪完成会在根目录下保存对应的模型pruned_model.pt。

4.6 finetune剪枝的网络

4.6.1 参数设置

更改finetune_pruned.py的相关参数如下

'--weights', type=str, default=ROOT / 'pruned_model.pt',
'--cfg', type=str, default='./models/yolov5s.yaml',
'--data', type=str, default=ROOT / 'data/my_yolov5.yaml', 
'--epochs', type=int, default=100
'--batch-size', type=int, default=16, 
'--imgsz', '--img', '--img-size', type=int, default=640,
'--adam', action='store_true', default=True, 
'--workers', type=int, default=8, 
'--project', default=ROOT / 'runs/finetune',

4.6.2 finetune

若没有修改finetune_pruned.py中的参数,如下执行。

python finetune_pruned.py --weights pruned_model.pt --adam --epochs 100

由于直接修改了finetune_pruned.py中的参数,直接执行

python finetune_pruned.py

执行时,报了【问题9】,按照相关解决方法可fine_tune正常开始。

4.7 循环稀疏训练->剪枝->finetune网络

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54657.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode 2235.两整数相加

一、两整数相加 给你两个整数 num1 和 num2&#xff0c;返回这两个整数的和。 示例 1&#xff1a; 输入&#xff1a;num1 12, num2 5 输出&#xff1a;17 解释&#xff1a;num1 是 12&#xff0c;num2 是 5 &#xff0c;它们的和是 12 5 17 &#xff0c;因此返回 17 。示例…

渗透测试方法论

文章目录 渗透测试方法论1. 渗透测试种类黑盒测试白盒测试脆弱性评估 2. 安全测试方法论2.1 OWASP TOP 102.3 CWE2.4 CVE 3. 渗透测试流程3.1 通用渗透测试框架3.1.1 范围界定3.1.2 信息搜集3.1.3 目标识别3.1.4 服务枚举3.1.5 漏洞映射3.1.6 社会工程学3.1.7 漏洞利用3.1.8 权…

[LitCTF 2023]Flag点击就送!

进入环境后是一个输入框&#xff0c;可以提交名字 然后就可以点击获取flag&#xff0c;结果回显提示&#xff0c;需要获取管理员 可以尝试将名字改为admin 触发报错&#xff0c;说明可能存在其他的验证是否为管理员的方式 通过抓包后&#xff0c;在cookie字段发现了 特殊的东西…

嵌入式系统入门实战:探索基本概念和应用领域

嵌入式系统是一种专用的计算机系统,它是为了满足特定任务而设计的。这些系统通常具有较低的硬件资源(如处理器速度、内存容量和存储容量),但具有较高的可靠性和实时性。嵌入式系统广泛应用于各种领域,如家用电器、汽车、工业控制、医疗设备等。 嵌入式系统的基本概念 微控…

实战项目 在线学院springcloud调用篇3(nacos,feging,hystrix,gateway)

一 springcloud与springboot的关系 1.1 关系 1.2 版本关系 1.3 list转json串 public class Test {public static void main(String[] args) {List<String> dataListnew ArrayList<String>();dataList.add("12");dataList.add("45");dataLi…

2023国赛数学建模思路 - 案例:退火算法

文章目录 1 退火算法原理1.1 物理背景1.2 背后的数学模型 2 退火算法实现2.1 算法流程2.2算法实现 建模资料 ## 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 退火算法原理 1.1 物理背景 在热力学上&a…

深入剖析Kubernetes之控制器模式的实现-Deployment

文章目录 Deployment Deployment Deployment 实现了 Kubernetes 项目中一个非常重要的功能&#xff1a;Pod 的“水平扩展 / 收缩”&#xff08;horizontal scaling out/in&#xff09;。这个功能&#xff0c;是从 PaaS 时代开始&#xff0c;一个平台级项目就必须具备的编排能力…

Idea配置Remote Host

一、打开RemoteHost窗口 双击shift打开全局搜索 搜索Tools→Deployment→Browse Remote Host或 idea项目顶部Tools→Deployment→Browse Remote Host 二、添加服务 右侧边栏打开RemoteHost&#xff0c;点击三个点&#xff0c;起个名字&#xff0c;选择type为SFTP&#xff…

使用Nacos与Spring Boot实现配置管理

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

直击成都国际车展:远航汽车多款车型登陆车展,打造完美驾乘体验

随着市场渗透率日益高涨&#xff0c;新能源汽车成为今年成都国际车展的关注焦点。在本届车展上&#xff0c;新能源品牌占比再创新高&#xff0c;覆盖两个展馆&#xff0c;印证了当下新能源汽车市场的火爆。作为大运集团重磅打造的高端品牌&#xff0c;远航汽车深度洞察高端智能…

速卖通产品权重打造,自养号补单技术策略

跨境电商市场的竞争确实很激烈&#xff0c;中小卖家要在速卖通上获得一席之地确实有一定难度。虽然补单可以提升销量和排名&#xff0c;但是目前的测评市场确实存在一些问题&#xff0c;选择一个成熟的服务商进行补单是非常重要的。 在选择服务商时&#xff0c;确保他们的技术…

尝试自主打造一个有限状态机(二)

前言 上一篇文章我们从理论角度去探索了状态机的定义、组成、作用以及设计&#xff0c;对状态机有了一个基本的认识&#xff0c;这么做有利于我们更好地去分析基于实际应用的状态机&#xff0c;以及在自主设计状态机时也能更加地有条不紊。本篇文章将从状态机的实际应用出发&am…

windows11不允许安装winpcap4.1.3

问题&#xff1a;下载安装包后在安装时显示与电脑系统不兼容&#xff0c;不能安装。 原因&#xff1a;winpcap是一个用于Windows操作系统的网络抓包库&#xff0c;有一些安全漏洞&#xff0c;存在被黑客攻击的风险。Windows11为了加强系统安全而禁用了这个库&#xff0c;因此不…

opencv/C++ 人脸检测

前言 本文使用的测试资源说明&#xff1a; opencv版本&#xff1a;opencv 4.6.0 人脸检测算法 Haar特征分类器 Haar特征分类器是一个XML文件&#xff0c;描述了人体各个部位的Haar特征值。包括&#xff1a;人脸、眼睛、鼻子、嘴等。 opencv 4.6.0自带的Haar特征分类器&…

2023中国算力大会 | 中科驭数加入DPU推进计划,探讨DPU如何激活算网融合新基建

8月18日&#xff0c;由工业和信息化部、宁夏回族自治区人民政府共同主办的2023中国算力大会在宁夏银川隆重召开。作为DPU算力基础设施领军企业&#xff0c;中科驭数产品运营部副总经理曹辉受邀在中国信通院承办的算网融合分论坛发表主题演讲《释放极致算力 DPU激活算网融合新基…

计算机竞赛 基于大数据的社交平台数据爬虫舆情分析可视化系统

文章目录 0 前言1 课题背景2 实现效果**实现功能****可视化统计****web模块界面展示**3 LDA模型 4 情感分析方法**预处理**特征提取特征选择分类器选择实验 5 部分核心代码6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于大数据…

代码随想录算法训练营之JAVA|第三十八天|494. 目标和

今天是第38天刷leetcode&#xff0c;立个flag&#xff0c;打卡60天。 算法挑战链接 494. 目标和https://leetcode.cn/problems/target-sum/ 第一想法 题目理解&#xff1a;题目给出一个数组&#xff0c;使用 或 - 算术符号&#xff0c;有多少种组合可以得到target的值。 拿…

【头歌】构建哈夫曼树及编码

构建哈夫曼树及编码 第1关:构建哈夫曼树 任务描述 本关任务:构建哈夫曼树,从键盘读入字符个数n及这n个字符出现的频率即权值,构造带权路径最短的最优二叉树(哈夫曼树)。 相关知识 哈夫曼树的定义 设二叉树具有n个带权值的叶子结点{w1,w2,...,wn},从根结点到每个叶…

FreeSWITCH 1.10.10 简单图形化界面4 - 腾讯云NAT设置

FreeSWITCH 1.10.10 简单图形化界面4 - 腾讯云NAT设置 0、 界面预览1、 查看IP地址2、 修改协议配置3、 开放腾讯云防火墙4、 设置ACL5、 设置协议中ACL&#xff0c;让PBX匹配内外网6、 重新加载SIP模块7、 查看状态8、 测试一下 0、 界面预览 http://myfs.f3322.net:8020/ 用…

关于事件回调机制

OVERVIEW 关于事件回调机制1.事件回调编程模式2.C中的事件回调编程模式函数指针回调函数对象回调 3.简单回调实例 关于事件回调机制 1.事件回调编程模式 当涉及到编程和软件开发时&#xff0c;事件回调是一种常见的编程模式。它用于处理异步事件和消息传递系统中的事件通知。 …