SVM详解

 公式太多了,就用图片用笔记呈现,SVM虽然算法本质一目了然,但其中用到的数学推导还是挺多的,其中拉格朗日约束关于α>0这块证明我看了很长时间,到底是因为悟性不够。对偶问题也是,用了一个简单的例子才明白,事实上,从简单的例子进行来理解更复杂的东西确实很舒服。核函数这块主要是正定核函数的证明需要看一下,K(x.z)=I(x)*I(z),先升维再求点积=先点积再升维。最后SMO,经典中的经典,看的我头疼,最主要的就是公式的推导。

 

 代码:

'''
原理解释:
支持向量为距离超平面最近的一个向量
而我们要寻找的是支持向量到超平面的最大距离
超平面可定义为W^T x +b=0 (参照二维直线方程ax+by+c=0)
二维空间点(x,y)到直线Ax+By+C=0的距离公式是:
|Ax+By+C|/(A^2+B^2)^(1/2)
扩展到n维空间后,点x=(x1,x2,x3,,,xn)到直线W^T x+b=0的距离为:
|W^T x+b|/||w||
其中||W||=(w1^2+...wn^2)^(1/2)
因为支持向量到超平面的距离是d,也是样本点到超平面的最短距离
所以 
(W^T x+b)/||W||>=d,y=1
(W^T X+b)/||W||<=-d,y=-1
稍作转换可以得到:
(W^T x+b)/(||W||*d)>=1,y=1
(W^T X+b)/(||W||*d)<=-1,y=-1'''
from __future__ import print_function
from numpy import *
import matplotlib.pyplot as plt
class optStruct:'''建立的数据结构来保存所有的重要值'''def __init__(self,dataMatIn,classLabels,C,toler,kTup):'''Args:dataMatIn 数据集classLabels 类别标签C   松弛变量(常量值),允许有些数据点可以处于分割面的错误一侧控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重可以通过调节该参数达到不同的结果toler 容错率kTup  包含核函数信息的元组'''self.X=dataMatInself.labelMat=classLabelsself.C=Cself.tol=toler#数据的行数self.m=shape(dataMatIn)[0]self.alphas=mat(zeros((self.m,1)))self.b=0#误差缓存,第一列给出的是eCache是否有效的标志位,第二列给出的是实际的E值self.eCache=mat(zeros((self.m,2)))#m行m列的矩阵#m行m列的矩阵self.K=mat(zeros((self.m,self.m)))for i in range(self.m):self.K[:,i]=kernelTrans(self.X,self.X[i,:],kTup)

    def kernelTrans(X,A,kTup):# calc the kernel or transform data to a higher dimensional space"""核转换函数Args:X     dataMatIn数据集A     dataMatIn数据集的第i行的数据kTup  核函数的信息Returns:"""m,n=shape(X)K=mat(zeros((m,1)))if kTup[0]=='lin':#linear kernel: m*n  *  n*1=m*1K=X*A.Telif kTup[0]=='rbf':for j in range(m):deltaRow=X[j,:]-AK[j]=deltaRow*deltaRow.T#径向基函数的高斯版本K=exp(K/(-1*kTup[1]**2))#divide in numpy is element-wise not matrix like matlabelse:raise NameError('Houston We Have a Problem -- That Kernel is not recognized')return Kdef loadDataSet(fileName):'''loadDataSet(对文件进行逐行解析,从而得到第n行的类标签和整个数据矩阵)Args:fileName 文件名Returns:dataMat 数据矩阵labelMat 类标签'''dataMat = []labelMat=[]fr=open(fileName)for line in fr.readlines():lineArr=line.strip().split('\t')dataMat.append([float(lineArr[0]),float(lineArr[1])])labelMat.append(float(lineArr[2]))return dataMat,labelMatdef calcEk(oS,k):'''calcEk(求Ek误差:预测值-真实值的差)该过程在完整版的SMO算法中出现的次数较多,因此将其单独作为一个方法Args:oS optStruct对象k  具体的某一行Returns:Ek 预测结果与真实结果比对,计算误差Ek'''fXk=float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k]+oS.b)  #E=apha*y*k+b-g(x)Ek=fXk-float(oS.labelMat[k])return Ekdef selectJrand(i,m):'''随机选择一个整数Args:i 第一个alpha的下标m 所有alpha的数目Returns:j 返回一个不为i的随机数,在0~m之间的整数值'''j=iwhile j==i:j=int(random.uniform(0,m))return jdef selectJ(i,oS,Ei):  #this is the second choice -heurstic,and calcs Ej'''内循环的启发式方法选择第二个(内循环)alpha的alpha值这里的目标是选择合适的第二个alpha值以保证每次优化中采用的最大步长该函数的误差与第一个alpha值Ei和下标i有关Args:i 具体的第一行oS optStruct对象Ei 预测结果与真实性结果比对,计算误差EiReturns:j 随机选出的第j一行Ej 预测结果与真实结果比对,计算误差Ej'''maxK=-1maxDeltaE=0Ej=0#首先将输入值Ei在缓存中设置成为有效的,这里的有效意味着它已经计算好了oS.eCache[i]=[1,Ei]# print ('oS.ecache[%s]=%s' %(i,oS.eCache[i]))#print ('oS.eCache[:,0].A=%s'%oS.eCache[:,0].A.T)###返回非0的:行列值# nonzero(oS.eCache[:,0].A)=(#     行:  array([ 0,  2,  4,  5,  8, 10, 17, 18, 20, 21, 23, 25, 26, 29, 30, 39, 46,52, 54, 55, 62, 69, 70, 76, 79, 82, 94, 97]), #     列:  array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0])#)# print('nonzero(oS.eCache[:,0].A)=',nonzero(oS.eCache[:,0].A))# # 取行的list# print('nonzero(oS.eCache[:,0].A)[0]=',nonzero(oS.eCache[:,0].A)[0])# 非零E值的行的list列表,所对应的alpha值validEcacheList=nonzero(oS.eCache[:,0].A)[0]if(len(validEcacheList))>1:for k in validEcacheList: #在所有的值上进行循环,并选择其中使得改变最大的那个值if k==i:continue #don't calc for i,waste of time#求Ek误差: 预测值-真实值的差Ek=calcEk(oS,k)deltaE=abs(Ei-Ek)if(deltaE>maxDeltaE):#选择具有最大步长的jmaxK=kmaxDeltaE=deltaEEj=Ekreturn maxK,Ejelse: #如果是第一次循环,则随机选择一个alpha值j=selectJrand(i,oS.m)#求Ek误差:预测值-真实值的差Ej=calcEk(oS,j)return j,Ejdef updateEk(oS,k):"""updateEk(计算误差值并存入缓存中。)在对alpha值进行优化之后会用到这个值。Args:oS  optStruct对象k   某一列的行号"""# 求 误差: 预测值-真实值的差    Ek=calcEk(oS,k)oS.eCache[k]=[1,Ek]def clipAlpha(aj,H,L):'''clipAlpha(调整aj的值,使aj处于 L<=aj<=H)Args:aj  目标值H   最大值L   最小值Returns:aj  目标值'''if aj>H:aj=Hif L>aj:aj=Lreturn ajdef innerL(i,oS):'''innerL内循环代码Args:i   具体的某一行oS  optStruct对象Returns:0   找不到最优的值1   找到了最优的值,并且oS.Cache到缓存中'''# 求Ek误差:预测值-真实值的差Ei=calcEk(oS,i)# 约束条件(KKT条件是解决最优化问题时用到的一种方法。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值)# 0<=alphas[i]<=C,但由于0和C是边界值,我们无法进行优化,因为需要增加一个alphas和降低一个alphas# 表示发生错误的概率:labelMat[i]*Ei 如果超出了toler,才需要优化,至于正负号,我们考虑绝对值就对了'''# 检验训练样本(xi, yi)是否满足KKT条件yi*f(i) >= 1 and alpha = 0 (outside the boundary)yi*f(i) == 1 and 0<alpha< C (on the boundary)yi*f(i) <= 1 and alpha = C (between the boundary)'''if((oS.labelMat[i]*Ei<-oS.tol)and (oS.alphas[i]<oS.C)) or ((oS.labelMat[i]*Ei>oS.tol) and (oS.alphas[i]>0)):#选择最大的误差对应的j进行优化,效果更明显j,Ej=selectJ(i,oS,Ei)alphaIold=oS.alphas[i].copy()alphaJold=oS.alphas[j].copy()#L和H用于将alphas[j]调整到0-C之间,如果L==H,就不做任何改变,直接return 0if(oS.labelMat[i]!=oS.labelMat[j]):L=max(0,oS.alphas[j]-oS.alphas[i])H=min(oS.C,oS.C+oS.alphas[j]-oS.alphas[i])else:L=max(0,oS.alphas[i]+oS.alphas[j]-oS.C)H=min(oS.C,oS.alphas[j]+oS.alphas[i])if L==H:# print("L==H")return 0# eta是alphas[j]的最优修改量,如果eta==0,需要退出for循环的当前迭代过程#参考《统计学习方法》李航-P125~P128<序列最小最优化算法>eta=2.0*oS.K[i,j]-oS.K[i,i]-oS.K[j,j] #changed for kernelif eta>=0:print("eta>=0")return 0#计算出一个新的alphas[j]值oS.alphas[j]-=oS.labelMat[j]*(Ei-Ej)/eta#并使用辅助函数,以及L和H对其进行调整oS.alphas[j]=clipAlpha(oS.alphas[j],H,L)#更新误差缓存updateEk(oS,j)# 检查alpha[j]是否只是轻微的改变,如果是的话,就退出for循环if(abs(oS.alphas[j]-alphaJold)<0.00001):# print("j not moving enough")return 0#然后alphas[i]和alphas[j]同样进行改变,虽然改变的大小不一样,但是改变的方向正好相反oS.alphas[i]+=oS.labelMat[j]*oS.labelMat[i]*(alphaJold-oS.alphas[j])#更新误差缓存updateEk(oS,i)# 在对alpha[i],alpha[j] 进行优化之后,给这两个alpha值设置一个常数b# w= Σ[1~n] ai*yi*xi => b = yi- Σ[1~n] ai*yi(xi*xj)# 所以:b1-b=(y1-y)- Σ[1~n] yi*(a1-a)*(xi*x1)# 为什么减2遍?因为是减去Σ[1~n],正好2个变量i和j,所以减2遍b1=oS.b-Ei-oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i]-oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]b2=oS.b-Ej-oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]-oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]if(0<oS.alphas[i])and (oS.C>oS.alphas[i]):oS.b=b1elif (0<oS.alphas[j])and (oS.C>oS.alphas[j]):oS.b=b2else:oS.b=(b1+b2)/2.0return 1else:return 0def smoP(dataMatIn,classLabels,C,toler,maxIter,kTup=('lin',0)):'''完整SMO算法外循环,与smoSimple有些类似,但这里的循环退出条件更多一些Args:dataMatIn    数据集classLabels  类别标签C   松弛变量(常量值),允许有些数据点可以处于分隔面的错误一侧。控制最大化间隔和保证大部分的函数间隔小于1.0这两个目标的权重。可以通过调节该参数达到不同的结果。toler   容错率maxIter 退出前最大的循环次数kTup    包含核函数信息的元组Returns:b       模型的常量值alphas  拉格朗日乘子'''# 创建一个optStruct 对象oS=optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler,kTup)iter=0entireSet=TruealphaPairsChanged=0# 循环遍历:循环maxIter次 并且(alphaPairsChanged存在可以改变 or所有行遍历一遍)while(iter<maxIter) and ((alphaPairsChanged>0)or (entireSet)):alphaPairsChanged=0# 当entireSet=true or 非边界alpha对没有了:就开始寻找alpha对,然后决定是否要进行else。if entireSet:# 在数据集上遍历所有可能的alphafor i in range(oS.m):#是否存在alpha对,存在就+1alphaPairsChanged+=innerL(i,oS)# print("fullSet,iter: %d i:%d,pairs changed %d" %(iter,i,clphaPairsChanged))iter+=1#对已存在alpha对,选出非边界的alpha值,进行优化else:#遍历所有的非边界alpha值,也就是不在边界0或C上的值nonBoundIs=nonzero((oS.alphas.A>0)*(oS.alphas.A<C))[0]for i in nonBoundIs:alphaPairsChanged+=innerL(i,oS)# print("non-bound,iter:%d i:%d,pairs changed %d"%(iter,i,alphaPairsChanged))iter+=1# 如果找到alpha对,就优化非边界alpha值,否则,就重新进行寻找,如果寻找一遍 遍历所有的行还是没找到,就退出循环if entireSet:entireSet=False #toggle entire set loopelif(alphaPairsChanged==0):entireSet=Trueprint("iteration number: %d" % iter)return oS.b,oS.alphasdef calcWs(alphas,dataArr,classLabels):'''基于alpha计算w值Args:alphas        拉格朗日乘子dataArr       feature数据集classLabels   目标变量数据集Returns:wc  回归系数'''X=mat(dataArr)labelMat=mat(classLabels).transpose()m,n=shape(X)w=zeros((n,1))for i in range(m):w+=multiply(alphas[i]*labelMat[i],X[i,:].T)return wdef testRbf(k1=1.3):dataArr,labelArr=loadDataSet('6.SVM/testSetRBF.txt')b,alphas=smoP(dataArr,labelArr,200,0.0001,10000,('rbf',k1))#C=200 importantdatMat=mat(dataArr)labelMat=mat(labelArr).transpose()svInd=nonzero(alphas.A>0)[0]sVs=datMat[svInd] # get matrix of only support vectorslabelSV=labelMat[svInd]print("there are %d Support Vectors"% shape(sVs)[0])m,n=shape(datMat)errorCount=0for i in range(m):kernelEval=kernelTrans(sVs,datMat[i,:],('rbf',k1))# 和这个svm-simple类似: fxi=float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T))+bpredict=kernelEval.T*multiply(labelSV,alphas[svInd])+bif sign(predict)!=sign(labelArr[i]):errorCount+=1print("the training error rate is : %f" %(float(errorCount)/m))dataArr,labelArr=loadDataSet('6.SVM/testSetRBF2.txt')errorCount=0datMat=mat(dataArr)labelMat=mat(labelArr).transpose()m,n=shape(datMat)for i in range(m):kernelEval=kernelTrans(sVs,datMat[i,:],('rbf',k1))predict=kernelEval.T*multiply(labelSV,alphas[svInd])+b   #w=Σalpha*y*x     y=w*x+bif sign(predict)!=sign(labelArr[i]):errorCount+=1print("the test error rate is : %f"%(float(errorCount)/m))ws=calcWs(alphas,dataArr,labelArr)plotfig_SVM(dataArr,labelArr,ws,b,alphas)def img2vector(filename):returnVect=zeros((1,1024))fr=open(filename)for i in range(32):lineStr=fr.readline()for j in range(32):returnVect[0,32*i+j]=int(lineStr[j])return returnVectdef loadImages(dirName):from os import listdirhwLabels=[]print(dirName)trainingFileList=listdir(dirName)#load the training setm=len(trainingFileList)trainingMat=zeros((m,1024))for i in range(m):fileNameStr=trainingFileList[i]fileStr=fileNameStr.split('.')[0]classNumber=int(fileStr.split('_')[0])if classNumber==9:hwLabels.append(-1)else:hwLabels.append(1)trainingMat[i, :] = img2vector('%s/%s' % (dirName, fileNameStr))return trainingMat, hwLabelsdef testDigits(kTup=('rbf',10)):#1.导入训练数据dataArr,labelArr=loadImages('6.SVM/trainingDigits')b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)datMat=mat(dataArr)labelMat=mat(labelArr).transpose()svInd=nonzero(alphas.A>0)[0]sVs=datMat[svInd]labelSV=labelMat[svInd]# print("there are %d Support Vectors"% shape(sVs)[0])m,n=shape(datMat)errorCount=0for i in range(m):kernelEval = kernelTrans(sVs, datMat[i, :], kTup)# 1*m * m*1 = 1*1 单个预测结果predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + bif sign(predict) != sign(labelArr[i]): errorCount += 1print("the training error rate is: %f" % (float(errorCount) / m))# 2. 导入测试数据dataArr, labelArr = loadImages('6.SVM/testDigits')errorCount = 0datMat = mat(dataArr)labelMat = mat(labelArr).transpose()m, n = shape(datMat)for i in range(m):kernelEval = kernelTrans(sVs, datMat[i, :], kTup)predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + bif sign(predict) != sign(labelArr[i]): errorCount += 1print("the test error rate is: %f" % (float(errorCount) / m)) ws=calcWs(alphas,dataArr,labelArr)plotfig_SVM(dataArr,labelArr,ws,b,alphas)def plotfig_SVM(xArr,yArr,ws,b,alphas):'''参考地址: http://blog.csdn.net/maoersong/article/details/24315633http://www.cnblogs.com/JustForCS/p/5283489.htmlhttp://blog.csdn.net/kkxgx/article/details/6951959'''xMat=mat(xArr)yMat=mat(yArr)# b 原来是矩阵,先转为数组类型后其数组大小为(1,1),所以后面加【0】,变为(1,)b=array(b)[0]fig=plt.figure()ax=fig.add_subplot(111)#注意flatten的用法ax.scatter(xMat[:,0].flatten().A[0],xMat[:,1].flatten().A[0])#x最大值,最小值根据原数据集dataArr[:0]的大小而定x=arange(-1.0,10.0,0.1)#根据x.w+b=0 得到,其式子展开为w0.x1+w1.x2+b=0,x2就是y值y=(-b-ws[0,0]*x)/ws[1,0]ax.plot(x,y)for i in range(shape(yMat[0, :])[1]):if yMat[0, i] > 0:ax.plot(xMat[i, 0], xMat[i, 1], 'cx')else:ax.plot(xMat[i, 0], xMat[i, 1], 'kp')# 找到支持向量,并在图中标红for i in range(100):if alphas[i] > 0.0:ax.plot(xMat[i, 0], xMat[i, 1], 'ro')plt.show()
#无核函数测试
#获取特征和目标变量
dataArr,labelArr=loadDataSet('6.SVM/testSet.txt')
#print labelArr#b是常量值,alphas是拉格朗日乘子
b,alphas=smoP(dataArr,labelArr,0.6,0.001,40)
print('/n/n/n')
print('b=',b)
print('alphas[alphas>0]=',alphas[alphas>0])
print('shape(alphas[alphas>0])=',shape(alphas[alphas>0]))
for i in range(100):if alphas[i]>0:print(dataArr[i],labelArr[i])
#画图
ws=calcWs(alphas,dataArr,labelArr)
plotfig_SVM(dataArr,labelArr,ws,b,alphas)#有核函数测试
testRbf(0.8)#项目实战
#手写数字识别
testDigits(('rbf', 0.2))
#sklearn库的运用
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
from sklearn import svmprint(__doc__)# 创建40个分离点
np.random.seed(0)
#X=np.r_[np.random.randn(20,2)-[2,2],np.random.randn(20,2)+[2,2]]
#Y=[0]*20+[1]*20def loadDataSet(fileName):'''对文件进行逐行解析,从而得到第n行的类标签和整个数据矩阵Args:fileName 文件名Returns:dataMat  数据矩阵labelMat 类标签'''dataMat=[]labelMat=[]fr=open(fileName)for line in fr.readlines():lineArr=line.strip().split('\t')dataMat.append([float(lineArr[0]),float(lineArr[1])])labelMat.append(float(lineArr[2]))return dataMat,labelMatX,Y=loadDataSet('6.SVM/testSet.txt')
X=np.mat(X)print("X=",X)
print("Y=",Y)#拟合一个SVM模型
clf=svm.SVC(kernel='linear')
clf.fit(X,Y)#获取分割超平面
w=clf.coef_[0]
#斜率
a=-w[0]/w[1]
# 从-5倒5,顺序间隔采样50个样本,默认是num=50
# xx=np.linspace(-5,5) # ,num=50)
xx=np.linspace(-2,10) # ,num=50)
#二维的直线方程
yy=a*xx-(clf.intercept_[0])/w[1]
print("yy=",yy)# plot the parallels to the separating hyperplane that pass through the support vectors
# 通过支持向量绘制分割超平面
print("support_vectors_=",clf.support_vectors_)
b=clf.support_vectors_[0]
yy_down=a*xx+(b[1]-a*b[0])
b=clf.support_vectors_[-1]
yy_up=a*xx+(b[1]-a*b[0])# plot the line, the points, and the nearest vectors to the plane
plt.plot(xx,yy,'k-')
plt.plot(xx,yy_down,'k--')
plt.plot(xx,yy_up,'k--')plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=80,facecolors='none')
plt.scatter([X[:, 0]], [X[:, 1]])plt.axis('tight')
plt.show()

 

以上为jupyter实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54246.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软考A计划-系统集成项目管理工程师-小抄手册(共25章节)-上

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 &#x1f449;关于作者 专注于Android/Unity和各种游…

求生之路2私人服务器开服搭建教程centos

求生之路2私人服务器开服搭建教程centos 大家好我是艾西&#xff0c;朋友想玩求生之路2(left4dead2)重回经典。Steam玩起来有时候没有那么得劲&#xff0c;于是问我有没有可能自己搭建一个玩玩。今天跟大家分享的就是求生之路2的自己用服务器搭建的一个心路历程。 &#xff0…

React+Typescript 父子组件事件传值

好 之前我们将 state 状态管理简单过了一下 那么 本文 我们来研究一下事假处理 点击事件上文中我们已经用过了 这里 我们就不去讲了 主要来说说 父子之间的事件 我们直接来编写一个小dom 我们父组件 编写代码如下 import Hello from "./components/hello";functio…

记录 JSONObject.parseObject json对象转换 对象字段为null

1.业务背景 使用websocket 接收消息都是String类型&#xff0c;没办法自定义实体类接收&#xff0c;所以接发都必须将json 转 对象 对象转 json。 这是我最开始的实体类&#xff0c;也就是转换的类型 package com.trinity.system.domain;import lombok.AllArgsConstructor; im…

【Midjourney电商与平面设计实战】创作效率提升300%

不得不说&#xff0c;最近智能AI的话题火爆圈内外啦。这不&#xff0c;战火已经从IT行业燃烧到设计行业里了。 刚研究完ChatGPT&#xff0c;现在又出来一个AI作图Midjourney。 其视觉效果令不少网友感叹&#xff1a;“AI已经不逊于人类画师了!” 现如今&#xff0c;在AIGC 热…

浅谈泛在电力物联网发展形态与技术挑战

安科瑞 华楠 摘 要&#xff1a;泛在电力物联网是当前智能电网发展的一个方向。首先&#xff0c;总结了泛在电力物联网的主要作用和价值体现&#xff1b;其次&#xff0c;从智能电网各个环节概述了物联网技术在电力领域的已有研究和应用基础&#xff1b;进而&#xff0c;构思并…

小研究 - J2EE 应用服务器的软件老化测试研究

软件老化现象是影响软件可靠性的重要因素&#xff0c;长期运行的软件系统存在软件老化现象&#xff0c;这将影响整个业务系统的正常运行&#xff0c;给企事业单位带来无可估量的经济损失。软件老化出现的主要原因是操作系统资源消耗殆尽&#xff0c;导致应用系统的性能下降甚至…

Docker容器:本地私有仓库、harbor私有仓库部署与管理

文章目录 一.本地私有仓库1.本地私有仓库概述2.搭建本地私有仓库3.容器重启策略简介 二.harbor私有仓库部署与管理1.什么是harbor2.Harbor的特性3、Harbor的构成4.Harbor私有仓库架构及数据流向5.harbor部署及配置&#xff08;192.168.198.11&#xff09;&#xff08;1&#xf…

Postman中参数区别及使用说明

一、Params与Body 二者区别在于请求参数在http协议中位置不一样。Params 它会将参数放入url中以&#xff1f;区分以&拼接Body则是将请求参数放在请求体中 后端接受数据: 二、body中不同格式 2.1 multipart/form-data key - value 格式输入&#xff0c;主要特点是可以上…

UG\NX二次开发 使用录制功能录制操作记录时,如何设置默认的开发语言?

文章作者&#xff1a;里海 来源网站&#xff1a;王牌飞行员_里海_里海NX二次开发3000例,C\C,Qt-CSDN博客 简介&#xff1a; NX二次开发使用BlockUI设计对话框时&#xff0c;如何设置默认的代码语言&#xff1f; 效果&#xff1a; 方法&#xff1a; 依次打开“文件”->“实用…

初识 Redis

初识 Redis 1 认识NoSQL1.1 结构化与非结构化1.2 关联和非关联1.3 查询方式1.4. 事务1.5 总结 2 Redis 概述2.1 应用场景2.2 特性 3 Resis 全局命令4 Redis 基本数据类型4.1 String4.1.1 常用命令4.1.2 命令的时间复杂度4.1.3 使用场景 4.2 Hash4.2.1 常用命令4.2.2 命令的时间…

芯片行业震荡期,数字后端还可以入吗?

自去年开始&#xff0c;芯片行业仿佛进入了动荡期&#xff0c;经历了去年秋招和今年春招的小伙伴都知道&#xff0c;如今找工作有多难。 半导体行业人才缩减、各大厂裁员&#xff0c;在加上高校毕业生人数破千万&#xff0c;对于即将踏入IC这个行业的应届生来说&#xff0c;今…

文旅景区vr体验馆游乐场vr项目是什么

我们知道现在很多的景区或者游玩的地方&#xff0c;以及学校、科技馆、科普馆、商场或公园或街镇&#xff0c;都会建一些关于游玩以及科普学习的项目。从而增加学习氛围或者带动人流量等等。这样的形式&#xff0c;还是有很好的效果呈现。 普乐蛙VR体验馆案例 下面是普乐蛙做的…

单片机学习-蜂鸣器如何发出声音

硬件电路 软件编写 ①发出声音 #include "reg52.h" typedef unsigned int u16; // 重新定义 类型 typedef unsigned char u8; // 重新定义 类型sbit BEEP P2^5; //定义 P2第五个管教 为BEEP // 延时函数 void delay_time(u16 times) {while(times--); } vo…

UI位置与布局

UI位置与布局 引言 发现UGUI的RectTransform定位还是很复杂的&#xff0c;感觉有必要详细了解一下 RectTransform 继承自Transform。他的local position由其他几个变量控制。建议不要直接设置position 目的是为了实现UI自动布局。这套方法将绝对定位&#xff0c;相对定位&a…

CH02_重构的原则(什么是重构、为什么重构、何时重构)

什么是重构 重构&#xff08;名词&#xff09;&#xff1a;对软件内部结构的一种调整&#xff0c;目的是在不改变软件可观察行为的前提下&#xff0c;提高其可理解性&#xff0c;降低其修改成本。 重构&#xff08;动词&#xff09;&#xff1a;使用一系列重构手法&#xff0…

VScode的PHP远程调试模式Xdebug

目录 第一步、安装VScode中相应插件 remote-ssh的原理 ssh插件&#xff1a; PHP相关插件&#xff1a; 第二步、安装对应PHP版本的xdebug 查看PHP具体配置信息的phpinfo页面 1、首先&#xff0c;打开php编辑器&#xff0c;新建一个php文件&#xff0c;例如&#xff1a;inde…

iOS App签名与重签名:从开发者证书到重新安装运行

前文回顾&#xff1a; iOS脱壳技术&#xff08;二&#xff09;&#xff1a;深入探讨dumpdecrypted工具的高级使用方法 iOS逆向&#xff1a;越狱及相关概念的介绍 在本文中&#xff0c;我们将详细介绍iOS应用的签名过程&#xff0c;包括开发者证书的种类、证书与App ID、Provisi…

一种IDEA疑难杂症的解决办法

解决办法 重启IDEA 针对于IDEA各种解析&#xff0c;运行时问题&#xff0c;但是无法通过搜索引擎得到答案的问题请试试此方法。 删除根目录下[.idea]文件夹后重启 此文件夹为idea首次导入项目时根据项目情况自动生成的配置文件。方便idea下次更快的解析项目。但是某些情况&a…

用MFC打开外部程序

在MFC&#xff08;Microsoft Foundation Classes&#xff09;中&#xff0c;你可以使用ShellExecute函数来打开Notepad并加载指定的文件。ShellExecute函数是Windows API的一部分&#xff0c;它可以执行与操作系统相关的操作&#xff0c;例如打开文件、运行程序等。 以下是在M…