【C++】—— C++11之可变参数模板

前言:

  • 在C语言中,我们谈论了有关可变参数的相关知识。在C++11中引入了一个新特性---即可变参数模板。本期,我们将要介绍的就是有关可变参数模板的相关知识!!!

目录

序言

(一)可变参数模板函数

1、sizeof... 运算符

(二)扩展参数包的两种方法

1、递归函数方式展开参数包

2、逗号表达式展开参数包

3、两种方法的优缺点

总结


序言

C++11的新特性可变参数模板能够让我们可以接受可变参数的函数模板和类模板,相比
C++98/03,类模版和函数模版中只能含固定数量的模版参数,可变模版参数无疑是一个巨大的改进。然而由于可变模版参数比较抽象,使用起来需要一定的技巧,所以这块还是比较晦涩的。现阶段呢,我们掌握一些基础的可变参数模板特性就够我们用了,所以这里我们点到为止,以后大家如果有需要,再可以深入学习。
 


(一)可变参数模板函数

在了解模板函数和模板类之前,我们需要先知道几个概念:

一个 可变参数模板 就是一个接收可变数目参数的模板函数或者是模板类。可变数目的参数被称为 函数包。存在两种函数包:

  • 模板参数包:使用 typename/class ... Args 来指出 Args 是一个模板参数包,表示零个或多个模板参数
  • 函数参数包:使用 Args ... rest 来指出 rest 是一个函数参数包,表示零个或多个函数参数

 💨下面就是一个基本可变参数的函数模板:

// Args是一个模板参数包,args是一个函数形参参数包
// 声明一个参数包Args...args,这个参数包中可以包含0到任意个模板参数。
template <class ...Args>
void ShowList(Args... args)
{}

【解释说明】

  • 上面的参数args前面有省略号,所以它就是一个可变模版参数,我们把带省略号的参数称为“参数包”,它里面包含了0到N(N>=0)个模版参数。

与往常一样,编译器从函数的实参推倒模板参数类型。对于一个可变参数模型,编译器还会推断包中参数的数目。例如,看下面一个简单例子:

// 可变参数函数模板
template<typename... Args>
void printArgs(Args... args) 
{cout << "Number of arguments: " << sizeof...(args) << endl;cout << endl;
}int main() {printArgs(1, 2, 3);                  // 输出:Number of arguments: 3   Arguments: 1 2 3printArgs("Hello", 3.14, 'c');       // 输出:Number of arguments: 3   Arguments: Hello 3.14 cprintArgs(10);                       // 输出:Number of arguments: 1   Arguments: 10printArgs();                         // 输出:Number of arguments: 0   Arguments:return 0;
}

 编译器会为 printArgs 实例化出以下四个不同版本,我们看下上面程序的汇编代码:


1、sizeof... 运算符

大家可以发现上述代码样例中,我使用了 sizeof...  这样的字段。那么这个是什么意思呢?

其实是 sizeof...   C++11引入的一元运算符,用于获取可变模板参数包中的参数数量:

  • 因此,接下来我尝试运行一下代码,看结果:

 【解释说明】

  • 在上面的示例中,我们定义了一个函数模板  printArgs ,它接受可变数量的模板参数。在函数模板中,我们使用  sizeof...   来获取参数包 args  中的参数数量

【小结】

  1.  运算符可以用于类模板和函数模板中,用于获取参数包的大小;
  2. 它在处理可变参数模板时非常有用,可以帮助我们实现更加灵活和通用的代码。

(二)扩展参数包的两种方法

因为我们无法直接获取参数包args中的每个参数,只能通过展开参数包的方式来获取参数包中的每个参数,这是使用可变模版参数的一个主要特点,也是最大的难点,即如何展开可变模版参数。由于语法不支持使用args[i]这样方式获取可变参数,所以我们的用一些奇招来一一获取参数包的值。

1、递归函数方式展开参数包

通过递归函数方式展开参数包是一种常见的处理可变参数模板的方法。这种方法利用函数的递归调用来依次处理参数包中的每个参数。

  • 下面是一个示例展示了如何使用递归函数方式展开参数包:
// 递归终止函数
template <class T>
void ShowList(const T& t)
{cout << t << endl;
}// 展开函数
template <class T, class ...Args>
void ShowList(T value, Args... args)
{cout << value << " ";ShowList(args...);
}int main()
{ShowList(1);ShowList(1, 'A');ShowList(1, 'A', std::string("sort"));return 0;
}

【解释说明】

 在上面的示例中,ShowList 是一个展开函数模板,用于递归展开参数包并输出每个参数的值。

  •  ShowList(const T& t):是递归终止函数,用于处理只有一个参数的情况。它接受一个参数 t,并将其输出到标准输出流;
  • ShowList(T value, Args... args):是展开函数模板的递归部分。它接受一个参数 value 和更多的参数包 Args... args。在函数体内,它首先输出 value 的值,然后通过递归调用 ShowList 函数来处理剩余的参数包 args...

以下是运行上述代码的输出结果:

 通过递归函数方式展开了参数包,并成功输出了每个参数的值。这是一种常见的使用递归的方法来处理可变参数模板的方式。

 💨【注意】 当定义可变参数版本的 ShowList 时,非可变参数版本必须要声明在可变参数版本 (递归体) 的作用域当中,否则会导致无限递归!!!


2、逗号表达式展开参数包

这种展开参数包的方式,不需要通过递归终止函数,是直接在expand函数体中展开的, printarg
不是一个递归终止函数,只是一个处理参数包中每一个参数的函数。这种就地展开参数包的方式
实现的关键是逗号表达式。我们知道逗号表达式会按顺序执行逗号前面的表达式。

 

  • 下面是一个示例展示了如何利用逗号表达式来展开参数包:
template <class T>
void PrintArg(T t)
{cout << t << " ";
}//展开函数
template <class ...Args>
void ShowList(Args... args)
{int arr[] = { (PrintArg(args), 0)... };cout << endl;
}int main()
{ShowList(1);ShowList(1, 'A');ShowList(1, 'A', std::string("sort"));return 0;
}

【解释说明】

在上面的示例中,PrintArg 是一个简单的辅助函数模板,用于打印参数的值。

  1. ShowList  是一个展开函数模板,它接受可变数量的参数,并使用逗号表达式来展开参数包。在展开过程中,每个参数都会被传递给 PrintArg 函数进行处理,并且逗号表达式的结果被忽略。
  2. 在 main 函数中,我们调用了 ShowList 函数,并传递了不同数量和类型的参数。通过逗号表达式展开参数包,每个参数都会被依次处理,并调用 PrintArg 函数将其值输出到标准输出流。

以下是运行上述代码的输出结果:

上述代码我们还可以像下述这样去进行实现操作:

 【说明】

  1.  expand函数中的逗号表达式:(printarg(args), 0),也是按照这个执行顺序,先执行printarg(args),再得到逗号表达式的结果0;
  2. 同时还用到了C++11的另外一个特性——初始化列表,通过初始化列表来初始化一个变长数组, {(printarg(args), 0)...}将会展开成((printarg(arg1),0),(printarg(arg2),0), (printarg(arg3),0), etc... ),最终会创建一个元素值都为0的数组int arr[sizeof...(Args)];
  3. 由于是逗号表达式,在创建数组的过程中会先执行逗号表达式前面的部分 printarg(args) 打印出参数,也就是说在构造int数组的过程中就将参数包展开了,这个数组的目的纯粹是为了在数组构造的过程展开参数包。
     

3、两种方法的优缺点

逗号表达式扩展方式和递归包扩展方式都可以用于展开可变参数模板,但它们具有不同的优缺点

具体如下:

逗号表达式扩展方式的优点:

  1. 简洁性:使用逗号表达式可以在一行代码中展开参数包,代码量较少且结构清晰。
  2. 高效性:逗号表达式会在编译时展开参数包,可以生成高效的代码。
  3. 可读性:逗号表达式展开参数包的语法较为直观,易于阅读和理解。

逗号表达式扩展方式的缺点:

  1. 顺序限制:逗号表达式展开参数包的顺序是从左到右,无法灵活地改变参数的处理顺序。
  2. 局限性:逗号表达式虽然简洁,但在某些复杂的情况下可能比较难以处理。

递归包扩展方式的优点:

  1. 灵活性:利用递归函数方式展开参数包可以在每一步递归中对参数进行处理和逻辑操作,具有更高的灵活性。
  2. 可控性:递归包展开方式可以通过递归函数中的控制语句和条件语句对参数包的展开进行控制。

递归包扩展方式的缺点:

  1. 代码冗余:递归函数方式展开参数包可能需要更多的代码量来实现,相对于逗号表达式方式来说,代码可能会更冗长。
  2. 可读性:递归函数方式展开参数包的代码结构可能比较复杂,不够直观。

根据具体的情况和需求,可以根据代码的复杂度和可读性的要求选择使用逗号表达式扩展方式或递归包扩展方式。逗号表达式方式适用于简单的参数展开,而递归包方式则适用于复杂的参数展开,可以更灵活地进行处理。


总结

以上便是关于c++11 可变参数模板函数的全部知识讲解!!感谢大家的观看与支持!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电子电路学习笔记之SA1117BH-1.2TR——LDO低压差线性稳压器

关于LDO调节器&#xff08;Low Dropout Regulator&#xff09;是一种电压稳压器件&#xff0c;常用于电子设备中&#xff0c;用于将高电压转换为稳定的低电压。它能够在输入电压和输出电压之间产生较小的差异电压&#xff0c;因此被称为"低压差稳压器"。 LDO调节器通…

web基础http与apache

一、http相关概念&#xff1a; http概述&#xff1a; HTTP 是一种用作获取诸如 HTML 文档这类资源的协议。它是 Web 上进行任何数据交换的基础&#xff0c;同时&#xff0c;也是一种客户端—服务器&#xff08;client-server&#xff09;协议 为解决"用什么样的网络协…

Datawhale AI夏令营 - 用户新增预测挑战赛 | 学习笔记

任务1&#xff1a;跑通Baseline # 1. 导入需要用到的相关库 # 导入 pandas 库&#xff0c;用于数据处理和分析 import pandas as pd # 导入 numpy 库&#xff0c;用于科学计算和多维数组操作 import numpy as np # 从 sklearn.tree 模块中导入 DecisionTreeClassifier 类 # De…

【docker】运行registry

registry简介 Docker registry是docker镜像仓库的服务,用于存储和分发docker镜像。 Docker registry主要特点和功能: 存储docker镜像:提供持久化存储docker镜像的功能,存储镜像的各个layer。 分发镜像:拉取和推送镜像的去中心化存储和分发服务。 支持版本管理:给镜像打标签…

【Visual Studio】生成.i文件

环境 VS版本&#xff1a;VS2013 问题 如何生成.i预编译文件&#xff1f; 步骤 1、打开VS项目属性&#xff0c;打开C/C\预处理器页面&#xff0c;【预处理到文件】选择是&#xff0c;开启。 2、生成文件如下。 3、正常编译需要关闭此选项。

vue ui 创建项目没有反应

问题 cmd中输入 vue ui 没有反应 解决办法 vue ui命令需要vue3.0以上的版本才可以 1、查看当前版本 vue --version vue版本在3.0以下是没有ui命令的 2、查看版本所拥有的命令 vue -h 3、卸载之前版本的vue npm uninstall vue-cli -g 卸载完成&#xff0c;检查是否已经…

前端高频面试题 js中堆和栈的区别和浏览器的垃圾回收机制

一、 栈(stack)和 堆(heap) 栈(stack)&#xff1a;是栈内存的简称&#xff0c;栈是自动分配相对固定大小的内存空间&#xff0c;并由系统自动释放&#xff0c;栈数据结构遵循FILO&#xff08;first in last out&#xff09;先进后出的原则&#xff0c;较为经典的就是乒乓球盒结…

使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化

本文整理自 NebulaGraph PD 方扬在「NebulaGraph x KubeBlocks」meetup 上的演讲&#xff0c;主要包括以下内容&#xff1a; NebulaGraph 3.x 发展历程NebulaGraph 最佳实践 建模篇导入篇查询篇 NebulaGraph 3.x 的发展历程 NebulaGraph 自 2019 年 5 月开源发布第一个 alp…

Notion团队协作魔法:如何玩转数字工作空间?

Notion简介 Notion已经成为现代团队协作的首选工具之一。它不仅仅是一个笔记应用&#xff0c;更是一个强大的团队协作平台&#xff0c;能够满足多种工作场景的需求。 Notion的核心功能 Notion提供了丰富的功能&#xff0c;如文档、数据库、看板、日历等&#xff0c;满足团队的…

【日常积累】Linux下ftp服务安装

概述 FTP是一种在互联网中进行文件传输的协议&#xff0c;基于客户端/服务器模式&#xff0c;默认使用20、21号端口&#xff0c;其中端口20用于进行数据传输&#xff0c;端口21用于接受客户端发出的相关FTP命令与参数。FTP服务器普遍部署于内网中&#xff0c;具有容易搭建、方…

MyBatis与Spring整合以及AOP和PageHelper分页插件整合

目录 前言 一、MyBatis与Spring整合的好处以及两者之间的关系 1.好处 2.关系 二、MyBatis和Spring集成 1.导入pom.xml 2.编写配置文件 3.利用mybatis逆向工程生成模型层代码 三、常用注解 四、AOP整合pageHelper分页插件 创建一个切面 测试 前言 MyBatis是一个开源的…

uniapp - 全平台兼容实现上传图片带进度条功能,用户上传图像到服务器时显示上传进度条效果功能(一键复制源码,开箱即用)

效果图 uniapp小程序/h5网页/app实现上传图片并监听上传进度,显示进度条完整功能示例代码 一键复制,改下样式即可。 全部代码 记得改下样式,或直接

计算机安全学习笔记(II):自主访问控制 - DAC

书接上篇博客&#xff0c;自主访问方案是指一个实体可以被授权按其自己的意志使另一个实体能够访问某些资源。DAC的一种通常访问方式是在操作系统或数据库管理系统中运用的访问矩阵(access matrix)。 矩阵中的一维由试图访问资源的被标识的主体组成。这个列表一般由用户或用户…

无涯教程-进程 - 组会话控制

在本章中&#xff0c;我们将熟悉进程组&#xff0c;会话和作业控制。 进程组(Process Groups ) - 进程组是一个或多个进程的集合&#xff0c;一个进程组由一个或多个共享相同进程组标识符(PGID)的进程组成。 会话(Sessions) - 它是各种进程组的集合。…

简述docker映射(Mapping)和挂载(Mounting)

映射的概念&#xff1a; 将容器内的端口映射到主机的端口上&#xff0c;这样就可以通过主机的网络接口与容器内部进行通信。主机上对应端口的请求会被转发到容器内部&#xff0c;从而实现对容器内部程序的通信访问&#xff08;注意&#xff01;这里提到的容器内部的端口并不一定…

Java—实现多线程程序 | 入门

目录 一、前言 二、基本概念 进程 线程 三、Java多线程实现 java.lang.Thread类 获取线程名字及对象 获取main进程名 Thread currentThread() 四、线程优先级 设置优先级 一、前言 前期入门学习的代码中&#xff0c;全部都是单线的程序&#xff0c;也就是从头到尾…

多线程MySQL分页查询-性能优化

MySQL分页查询优化 一、背景二、原因三、解决四、原理探究 https://blog.csdn.net/hollis_chuang/article/details/130570281 总结&#xff1a; 一、背景 业务背景&#xff1a;给C端10万级别的用户&#xff0c;同时发送活动消息&#xff0c;活动消息分为6类。数据背景&#…

测试驱动开发(TDD)

测试驱动开发&#xff08;TDD&#xff09; 本篇文章简单叙述一下什么是测试驱动开发&#xff0c;以及怎么进行测试驱动开发&#xff01; TDD &#xff08;Test Driven Development&#xff09;&#xff1a;&#xff08;源于极限编程&#xff08;XP&#xff09;&#xff09;在不…

STM32f103入门(2)流水灯蜂鸣器

流水灯 /* #define GPIO_Pin_0 ((uint16_t)0x0001) /*!< Pin 0 selected */ #define GPIO_Pin_1 ((uint16_t)0x0002) /*!< Pin 1 selected */ #define GPIO_Pin_2 ((uint16_t)0x0004) /*!< Pin 2 selected */ #de…

前端工程化之规范化

规范化是我们践行前端工程化中重要的一部分。 为什么要有规范化标准 俗话说&#xff0c;无规矩不成方圆&#xff0c;尤其是在开发行业中&#xff0c;更是要有严谨的工作态度&#xff0c;我们都知道大多数软件开发都不是一个人的工作&#xff0c;都是需要多人协同的&#xff0…