【C++心愿便利店】No.3---内联函数、auto、范围for、nullptr

文章目录

  • 前言
  • 🌟一、内联函数
    • 🌏1.1.面试题
    • 🌏1.2.内联函数概念
    • 🌏1.3.内联函数特性
  • 🌟二、auto关键字
    • 🌏2.1.类型别名思考
    • 🌏2.2.auto简介
    • 🌏2.3.auto的使用细节
    • 🌏2.4.auto不能推导的场景
    • 🌏2.5.小场景补充
  • 🌟三、基于范围的for循环
    • 🌏3.1.范围for的语法
    • 🌏3.2.范围for的使用条件
  • 🌟四、指针空值nullptr


前言

在这里插入图片描述

👧个人主页:@小沈YO.
😚小编介绍:欢迎来到我的乱七八糟小星球🌝
📋专栏:C++ 心愿便利店
🔑本章内容:内联函数、auto、范围for、nullptr
记得 评论📝 +点赞👍 +收藏😽 +关注💞哦~


提示:以下是本篇文章正文内容,下面案例可供参考

🌟一、内联函数

内联函数

🌏1.1.面试题

面试题

通过对C语言的学习,对于宏有了一定的了解,当定义一个宏常量是是非常方便的直接替换这在数据结构链表处有明显的体现,但是对于宏函数的写法就比较容易出错有以下几种形式的错误需要提醒

#define N 10//宏常量
//宏函数
#define ADD(int x , int y) {return x+y;}//宏的调用不需要return
#define ADD(x , y) (return x+y;)
#define ADD(x , y) return x+y;#define ADD(x , y) x+y;//宏后面不需要分号
//加分号是可以的但对于有些语法是不通过的
int main()
{ADD(1, 2);//这种是不会报错的printf("%d\n", ADD(1, 2));//这种会报错因为宏替换后,会多出一个分号return 0;
}#define ADD(x , y) x+y//可能出现优先级错误
int main()
{ADD(1, 2);printf("%d\n", ADD(1, 2));printf("%d\n", ADD(1, 2) * 3);//这里替换后变成了1+2*3=7显然不是想要得到的9return 0;
}#define ADD(x , y) (x+y)//可能出现优先级错误
int main()
{ADD(1, 2);printf("%d\n", ADD(1, 2));printf("%d\n", ADD(1, 2) * 3);int a = 1, b = 2;ADD(a | b, a & b);//替换后变成(a|b+a&b)  +号的优先级高于| &所以会先算+return 0;
}#define ADD(x , y) ((x)+(y))   这是正确的
1. 宏的优缺点

宏的优缺点?
优点:
1.增强代码的复用性。
2.提高性能。
缺点:
1.不方便调试宏。(因为预编译阶段进行了替换)
2.导致代码可读性差,可维护性差,容易误用,语法很坑。
3.没有类型安全的检查 。
宏函数的优点:
1.没有类型的严格限制
2.针对频繁调用小函数,不需要再建立栈帧,提高了效率

int Add(int left, int right)
//这种函数调用是需要建立栈帧的但是宏函数不需要直接替换了
{return left + right;
}
2. C++有哪些技术替代宏

C++有哪些技术替代宏?

  1. 常量定义 换用const enum
  2. 短小函数定义 换用内联函数

🌏1.2.内联函数概念

内联函数的概念

以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开没有函数调用建立栈帧的开销内联函数提升程序运行的效率

在这里插入图片描述

如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用

查看方式:
  1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
  2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,以下给出vs2013的设置方式)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码示例:
inline int add(int x, int y)
{return x + y;
}
int main()
{int a = 1, b = 2;int ret = add(1, 2);//int ret = add(a | b , a & b);//这样写也不会像宏函数一样出错了printf("%d\n", ret);return 0;
}

🌏1.3.内联函数特性

内联函数的特性
特性1:

inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大(代码膨胀),优势:少了调用开销,提高程序运行效率。(不能任何情况下都用内联)

特性2:

inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为《C++prime》第五版关于inline的建议:

内联说明只是向编译器发出的一个请求,编译器可以选择忽略这个请求

一般来说,内联机制用于优化规模较小、流程直接、频繁调用的函数。很多编译器都不支持内联递归函数,而且一个75行的函数也不大可能在调用点内联地展开。

1. 太长就不会展开:
inline int add(int x, int y)
{return x + y;
}
inline int func()
{int x1= 0;int x2 = 0;int x3 = 0;int x4 = 0;int ret = 0;ret += x1;ret *= x2;ret /= x3;ret /= x3;ret /= x3;ret += x1;ret += x1;return ret;
}
int main()
{int a = 1, b = 2;//int ret = add(1, 2);int ret = add(a | b , a & b);printf("%d\n", ret);ret = func();return 0;
}

在这里插入图片描述

2. 缩短就可能会展开
inline int add(int x, int y)
{return x + y;
}
inline int func()
{int x1= 0;int x2 = 0;int x3 = 0;int x4 = 0;int ret = 0;ret += x1;return ret;
}
int main()
{int a = 1, b = 2;//int ret = add(1, 2);int ret = add(a | b , a & b);//这样写也不会像宏函数一样出错了printf("%d\n", ret);ret = func();return 0;
}

在这里插入图片描述

特性3:

inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开就没有函数地址了,链接就会找不到

1. 代码示例:
//Func.h
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>using namespace std;inline void f(int i);//Func.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include "Func.h"
void f(int i)
{cout << "f(int i)" << i << endl;
}//Test.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include"Func.h"
using namespace std;
int main()
{f(1);//只有声明需要地址(但内联不会进入符号表)return 0;
}

Test.cpp调用f(1)函数,f()只有声明没有定义,调用实际链接的时候编译语法都过了,允许在链接的时候再去找地址,定义可能在其他地方,就去其他地方找地址(用函数名修饰规则去找)找不到就会出现链接错误

效果演示:

当Func.h中inline void f(int i);变成void f(int i)就不会出现问题(去掉内联)

请添加图片描述

2. 代码示例:
//Func.h
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>using namespace std;inline void f(int i);void fx();//Func.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include "Func.h"
void f(int i)
{cout << "f(int i)" << i << endl;
}
void fx()
{f(1);//既有声明也有定义这里直接展开不需要地址
}//Test.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include"Func.h"
using namespace std;
int main()
{f(1);fx();return 0;
}
效果演示:

f()这个函数肯定是在的,不然fx()就不会调到它,但是Test.cpp中的 f() 不可调用Func.cpp中的 f() 可以调用,一般只有声明没有定义调不到,但是在Func.cpp中定义了 f()也调不到,原因就是f()函数定义成了内联,在用的地方就展开了就不需要生成指令建立栈帧把地址放进符号表

请添加图片描述

3. 正确代码示例:
//Func.h
//声明和定义不分离
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>using namespace std;inline void f(int i);
{cout << "f(int i)" << i << endl;
}//Test.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include"Func.h"
using namespace std;
int main()
{f(1);return 0;
}

🌟二、auto关键字

🌏2.1.类型别名思考

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

  1. 类型难于拼写
  2. 含义不明确导致容易出错
#include<iostream>
#include<vector>
#include<string>
using namespace std;
int TestAuto()
{return 10;
}
int main()
{std::vector<std::string>v;//std::vector<std::string>::iterator it = v.begin();《==》auto it = v.begin();auto it = v.begin();cout << typeid(it).name() << endl;//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化return 0;
}

在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义

🌏2.2.auto简介

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得(根据右边的值自动推导左边的类型)

int TestAuto()
{return 10;
}
int main()
{int a = 10;auto b = a;auto c = 'a';auto d = TestAuto();cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;cout << typeid(d).name() << endl;//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化return 0;
}
效果演示:

在这里插入图片描述

使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。

🌏2.3.auto的使用细节

1. auto与指针和引用结合起来使用
int main()
{int x = 10;auto a = &x;auto* b = &x;auto& c = x;cout << typeid(a).name() << endl;cout << typeid(b).name() << endl;cout << typeid(c).name() << endl;return 0;
}
效果演示:

在这里插入图片描述

2. 在同一行定义多个变量
void TestAuto()
{auto a = 1, b = 2; auto c = 3, d = 4.0;  // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}

🌏2.4.auto不能推导的场景

1. auto不能作为函数的参数
  1. auto不能作为函数的参数
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}
2. auto不能直接用来声明数组
  1. auto不能直接用来声明数组
void TestAuto()
{int a[] = {1,2,3};auto b[] = {456};
}
  1. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
  2. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有lambda表达式等进行配合使用。

🌏2.5.小场景补充

TypeId 返回一个变量或数据类型的“类型”。

🌟三、基于范围的for循环

🌏3.1.范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行:

#include<iostream>
using namespace std;
void TestFor()
{int array[] = { 1, 2, 3, 4, 5 };for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)array[i] *= 2;for (int* p = array; p < array + sizeof(array) / sizeof(array[0]); ++p)cout << *p<<" ";
}
int main()
{TestFor();return 0;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量第二部分则表示被迭代的范围

#include<iostream>
using namespace std;
void TestFor()
{int array[] = { 1, 2, 3, 4, 5 };for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)array[i] *= 2;for (int* p = array; p < array + sizeof(array) / sizeof(array[0]); ++p)cout << *p<<" ";cout << endl;for (auto& n : array)//至于这里为什么采用引用//是因为不采用引用只是从array中取数赋值给n,n*=2发生变化对数组没影响所以要引用才能改变数组{n *= 2;}for (auto m : array)//当然也不是必须写成auto m,可以int m ,double m,只是auto会根据右边值的类型推导出左边类型{cout << m << " ";}cout << endl;
}
int main()
{TestFor();return 0;
}
注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环

🌏3.2.范围for的使用条件

for循环迭代的范围必须是确定的

对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供
begin和end的方法,begin和end就是for循环迭代的范围。
注意:以下代码就有问题,因为for的范围不确定

void TestFor(int array[])
{for(auto& e : array)cout<< e <<endl;
}

🌟四、指针空值nullptr

C++98中的指针空值

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:

void TestPtr()
{
int* p1 = NULL;
int* p2 = 0;
// ……
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

可以看到,NULL可能被定义为字面常量0或者被定义为无类型指针(void*)的常量。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

#include<iostream>
using namespace std;
void f(int)
{cout << "f(int)" << endl;
}
void f(int*)
{cout << "f(int*)" << endl;
}
int main()
{f(0);f(NULL);f((int*)NULL);return 0;
}

在这里插入图片描述

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。

在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。

注意:
  • 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。

  • 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。

  • 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53867.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux——基础IO(2)及动静态库多种方式使用及制作

目录 0. 前言 1. 文件存储设备—磁盘 1.1 文件及存储介质 1.2 磁盘结构 1.3 磁盘存储结构 1.4 磁盘的抽象&#xff08;虚拟、逻辑&#xff09;结构 1.5 磁盘分区管理 2. 理解文件系统 2.1 Linux磁盘文件管理 2.2 文件inode属性及Data block数据追溯 2.3 inode编号及…

2022年06月 C/C++(四级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题&#xff1a;公共子序列 我们称序列Z < z1, z2, …, zk >是序列X < x1, x2, …, xm >的子序列当且仅当存在 严格上升 的序列< i1, i2, …, ik >&#xff0c;使得对j 1, 2, … ,k, 有xij zj。比如Z < a, b, f, c > 是X < a, b, c, f, b, …

网站常见安全漏洞 | 青训营

Powered by:NEFU AB-IN 文章目录 网站常见安全漏洞 | 青训营 网站基本组成及漏洞定义服务端漏洞**SQL注入****命令执行****越权漏洞****SSRF****文件上传漏洞** 客户端漏洞**开放重定向****XSS****CSRF****点击劫持****CORS跨域配置错误****WebSocket** 网站常见安全漏洞 | 青训…

用户端Web自动化测试_L4

目录&#xff1a; selenium多浏览器处理执行 javascript 脚本headless无头浏览器使用capability配置参数解析企业微信实战cypress测试框架介绍Playwright测试框架介绍 1.selenium多浏览器处理 多浏览器测试背景 用户使用的浏览器(firefox,chrome,IE 等)web 应用应该能在任何…

基于黏菌算法优化的BP神经网络(预测应用) - 附代码

基于黏菌算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于黏菌算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.黏菌优化BP神经网络2.1 BP神经网络参数设置2.2 黏菌算法应用 4.测试结果&#xff1a;5.Matlab代码 摘要…

【算法系列篇】前缀和

文章目录 前言什么是前缀和算法1.【模板】前缀和1.1 题目要求1.2 做题思路1.3 Java代码实现 2. 【模板】二维前缀和2.1 题目要求2.2 做题思路2.3 Java代码实现 3. 寻找数组的中心下标3.1 题目要求3.2 做题思路3.3 Java代码实现 4. 除自身以外的数组的乘积4.1 题目要求4.2 做题思…

Android Jetpack Compose中使用字段验证的方法

Android Jetpack Compose中使用字段验证的方法 数据验证是创建健壮且用户友好的Android应用程序的关键部分。随着现代UI工具包Jetpack Compose的引入&#xff0c;处理字段验证变得更加高效和直观。在这篇文章中&#xff0c;我们将探讨如何在Android应用中使用Jetpack Compose进…

Nacos配置管理服务

统一配置管理 功能&#xff1a;对配置文件相同的微服务进行配置文件的统一管理。 统一配置管理是解决场景&#xff1a;普通情况下&#xff0c;多个相同功能的微服务实例&#xff0c;更改配置的话得一个一个更改后重启的情况。 核心配置放在配置管理服务中&#xff0c;启动时…

MathType7MAC中文版数学公式编辑器下载安装教程

如今许多之前需要手写的内容都可以在计算机中完成了。以前我们可以通过word输入一些简单的数学公式&#xff0c;但现在通过数学公式编辑器便可以完成几乎所有数学公式的写作。许多简单的数学公式&#xff0c;我们可以使用输入法一个个找到特殊符号并输入&#xff0c;但是对于高…

JavaScript——为什么静态方法不能调用非静态方法

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…

【Java并发】聊聊对象内存布局和syn锁升级过程

对象存储解析&#xff1a;一个空Object对象到底占据多少内存&#xff1f; 对象内存布局 Mark Word占用8字节&#xff0c;类型指针占用8个字节&#xff0c;对象头占用16个字节。 好了&#xff0c;我们来看一下一个Object对占用多少空间&#xff0c; 因为java默认是开启压缩…

C语言:指针和数组(看完拿捏指针和数组)

目录 数组名的理解&#xff1a; 一维数组&#xff1a; 解析&#xff1a; 字符数组&#xff1a; 解析&#xff1a; 解析&#xff1a; 字符串数组&#xff1a; 解析&#xff1a; 解析&#xff1a; 一级指针&#xff1a; 解析&#xff1a; 解析&#xff1a; 二维数组&a…

学习ts(七)泛型

定义 泛型允许我们在强类型程序设计语言中编写代码时使用一些以后才指定的类型&#xff0c;在实例化时作为参数指明这些类型。在ts中&#xff0c;定义函数、接口或类的时候&#xff0c;不预先定义好具体的类型&#xff0c;而在使用的时候在指定类型的一种特性。 例子&#xff…

MinDoc:针对IT团队的文档、笔记系统

作为一名IT从业者&#xff0c;无论是在公司团队中&#xff0c;还是在平时自己写一些笔记、博客等文档&#xff0c;我都习惯使用markdown来进行书写。在使用过许多支持markdown语法的系统或软件&#xff08;如Typora、未知、我来、思源、觅道等&#xff09;后&#xff0c;我总觉…

Adobe After Effects软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 Adobe After Effects是一款由Adobe公司开发的数字视觉效果和动态影像处理软件&#xff0c;它被广泛应用于电影、电视、广告、游戏等领域。After Effects可以与其他Adobe软件如Photoshop、Illustrator、Premiere等无缝结合&#…

neo4jd3拓扑节点显示为节点标签(自定义节点显示)

需求描述&#xff1a;如下图所示&#xff0c;我的拓扑图中有需要不同类型的标签节点&#xff0c;我希望每个节点中显示的是节点的标签 在官方示例中&#xff0c;我们可以看到&#xff0c;节点里面是可以显示图标的&#xff0c;现在我们想将下面的图标换成我们自定义的内容 那…

什么是NetDevOps

NetDevOps 是一种新兴的方法&#xff0c;它结合了 NetOps 和 DevOps 的流程&#xff0c;即将网络自动化集成到开发过程中。NetDevOps 的目标是将虚拟化、自动化和 API 集成到网络基础架构中&#xff0c;并实现开发和运营团队之间的无缝协作。 开发运营&#xff08;DevOps&…

SpringCloud教程 | 第六篇: 分布式配置中心(Spring Cloud Config)

在上一篇文章讲述zuul的时候&#xff0c;已经提到过&#xff0c;使用配置服务来保存各个服务的配置文件。它就是Spring Cloud Config。 一、简介 在分布式系统中&#xff0c;由于服务数量巨多&#xff0c;为了方便服务配置文件统一管理&#xff0c;实时更新&#xff0c;所以需…

【UE5:CesiumForUnreal】——3DTiles数据属性查询和单体高亮

目录 0.1 效果展示 0.2 实现步骤 1 数据准备 2 属性查询 2.1 射线检测 2.2 获取FeatureID 2.3 属性查询 2.4 属性显示 3 单体高亮 3.1 构建材质参数集 3.2 材质参数设置 3.3 添加Cesium Encode Metadata插件 3.4 从纹理中取出特定FeatureId属性信息 3.5 创建…

UE4 材质学习笔记

CheapContrast与CheapContrast_RGB都是提升对比度的&#xff0c;一个是一维输入&#xff0c;一个是三维输入&#xff0c;让亮的地方更亮&#xff0c;暗的地方更暗&#xff0c;不像power虽然也是提升对比度&#xff0c;但是使用过后的结果都是变暗或者最多不变&#xff08;值为1…