HTTPS协议加密原理

目录

一、什么是HTTPS

 二、什么是加密/解密

三、为什么要加密

四、常见的加密方式

1.对称加密

2. 非对称加密

 五、HTTPS加密方式探讨

1.只使用对称加密

2.只使用非对称加密

3.非对称加密+对称加密 

4.非对称加密+对称加密+CA认证

六、总结


 一、什么是HTTPS

HTTP 协议:是客户端浏览器或其他程序与Web服务器之间的应用层通信协议 。

HTTPS 协议:可以理解为HTTP+SSL/TLS, 也就是在HTTP协议的基础下加入了 SSL 层,HTTPS 的安全基础是 SSL,因此加密的详细内容就需要 SSL,用于安全的 HTTP 数据传输。

SSL(安全套接字层):SSL 协议位于 TCP/IP 协议与各种应用层协议之间,为数据通讯提供安全支持。

TLS(传输层安全性协议):其前身安全套接字层(SSl)是一种安全协议,目的是为互联网通信提供安全及数据完整性保障。

 二、什么是加密/解密

加密就是将我们能一眼看明白并且很多人都能看懂的信息进行包装,变成很难理解的一段信息,即明文变成密文过程。

解密就是将已加密后的密文信息经过一系列的变换,还原为很容易理解的明文信息。

据记载,公元前400年,古希腊人就发明了置换密码;在第二次世界大战期间,德国军方启用了“恩尼格玛”密码机,所以密码学在社会发展中有着广泛的用途。在现代加密解密已经发展成⼀个独⽴的学科:密码学。而密码学的奠基⼈,也正是计算机科学的祖师爷之⼀, 艾伦·⻨席森·图灵

三、为什么要加密

因为http的内容是明文传输的,明文数据会经过中间代理服务器、路由器、wifi热点、通信服务运营商等多个物理节点,如果信息在传输过程中被劫持,传输的内容就完全暴露了。劫持者还可以篡改传输的信息且不被双方察觉,这就是中间人攻击。所以我们才需要对信息进行加密。

比如一个典型的"运营商劫持"案例:当我们通过非官网的途径,下载某个软件时,经常发生的就是下载完成后的软件与自己本要下载的是完全不同的两个。这是因为我们通过⽹络传输的任何的数据包都会经过运营商的⽹络设备(路由器,交换机等),那么运营商的⽹络设备就可以解析出你传输的数据内容,并进⾏篡改.点击"下载按钮",其实就是在给服务器发送了⼀个HTTP请求,获取到的HTTP响应其实就包含了该APP的下载链接.运营商劫持之后,就发现这个请求是要下载 A AA,那么就⾃动的把交给用户的响应给篡改成 BBB 的下载地址了。

四、常见的加密方式

1.对称加密

采⽤单钥密码系统的加密⽅法,同⼀个密钥可以同时⽤作信息的加密和解密,这种加密⽅法称为对称加密,也称为单密钥加密

  • 特征:加密和解密所⽤的密钥是相同的。
  • 常⻅对称加密算法:DES、3DES、AES、TDEA、Blowfish、RC2等。
  • 特点:算法公开、计算量⼩、加密速度快、加密效率⾼。
  • 对称加密其实就是通过同⼀个"密钥",把明⽂加密成密⽂,并且也能把密⽂解密成明⽂.

这种方式通俗一点来讲就好比一把钥匙和一道门,门作为信息,钥匙作为密钥,加密就是通过钥匙将门上锁,解密就是用钥匙把门打开。

⼀个简单的对称加密,按位异或
假设明⽂a=1234,密钥key=8888,则加密a^key得到的密⽂b为9834。然后针对密⽂9834再次进⾏运算b^key,得到的就是原来的明⽂1234。(对于字符串的对称加密也是同理,每⼀个字符都可以表示成⼀个数字)
当然,按位异或只是最简单的对称加密,HTTPS中肯定也不能是使⽤按位异或这种方式。

2. 非对称加密

需要两个密钥来进⾏加密和解密,这两个密钥是公开密钥(public key,简称公钥)和私有密钥(private key,简称私钥)。

  • 常⻅⾮对称加密算法:RSA,DSA,ECDSA
  • 特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,⽽使得加密解密速度没有对称加密解密的速度快。

⾮对称加密要⽤到两个密钥,⼀个叫做"公钥",⼀个叫做"私钥"。公钥和私钥是配对的,最⼤的缺点就是运算速度⾮常慢,⽐对称加密要慢很多。

使用方法:通过公钥对明⽂加密,变成密⽂,通过私钥对密⽂解密,变成明⽂。也可以反着⽤通过私钥对明⽂加密,变成密⽂通过公钥对密⽂解密,变成明⽂。
这种加密方式就好比一把锁、一把钥匙、一道门,其中门作为信息,锁作为公钥,钥匙作为密钥,锁是公开的,任何人都可以拿着这把锁把门锁上(加密),但是要把门打开,就只有使用这唯一的钥匙(解密)。

 五、HTTPS加密方式探讨

1.只使用对称加密

如果通信双⽅都各自持有同⼀个密钥X,且没有别⼈知道,这两⽅的通信安全当然是可以被保证的(除非密钥被破解)。

 但是在网络中,服务器与客户端需要建立连接之后才能进行通信,在首次建立连接时,怎样才能让双方都知道密钥,而又不能让其他人知道呢?

如果是服务器给客户端明文发送密钥,那么肯定很容易被劫持,但将密钥加密发送客户端肯定又看不懂。

如果统一规定服务器与客户端使用同一密钥,但是服务器与客户端的连接并不是一对一的,而是一对多的,那么这样密钥太扩散了,很容易就被黑客拿到了。

所以但使用对称加密是肯定不行。

2.只使用非对称加密

对于非对称加密,在服务器与客户端通信双方首次建立连接时,双方可以彼此交换自己的公钥,连接建立后,在给对方发送信息时,就可以使用对方的公钥进行加密,而要解密也只能对方使用自己私钥才能进行解密。

 如上方法看似很完美,但是要知道黑客的技术也是很厉害的。比如在客户端与服务器进行连接时,黑客将客户端发送给服务器的公钥C进行劫持,然后黑客把自己的公钥P发送给服务器,那么在后续服务器与客户端进行信息发送的过程中,服务器对信息进行加密的公钥不是客户端的,而是黑客的公钥P,那么服务器所发送的所有信息,黑客都可以通过自己的私钥P*进行解密查看,然后黑客再使用客户端公钥C再对信息进行加密发送给客户端,此时客户端也就能使用自己的私钥C*进行解密查看,再整个过程中客户端几乎是察觉不到信息发生了泄露。

又或是服务器先把公钥以明文方式传输给浏览器,之后浏览器向服务器传数据前都先用这个公钥加密好再传送,这条数据的安全似乎可以保障了!因为只有服务器有相应的私钥能解开公钥加密的数据。然而反过来由服务器到浏览器的这条路怎么保障安全?如果服务器用它的私钥加密数据传给浏览器,那么浏览器用公钥可以解密它,而这个公钥是一开始通过明文传输给浏览器的,若这个公钥被中间人劫持到了,那他也能用该公钥解密服务器传来的信息了。

所以只使用非对称加密也不安全

3.非对称加密+对称加密 

原理

客户端发起https请求,获取服务端公钥S,客户端在本地⽣成对称密钥C,通过公钥S加密,发送给服务器。由于中间的网络设备没有私钥,即使截获了数据,也⽆法还原出内部的原⽂,也就⽆法获取到对称密钥。服务器通过私钥S*解密,还原出客⼾端发送的对称密钥C。并且使⽤这个对称密钥加密给客户端返回的响应数据。

 漏洞

该方式也只能再服务器与客户端握手连接成功后才能保证信息的安全,如果黑客再服务器与客户端握手时进行劫持,那么就会出现与只使用非对称加密方式一样的漏洞。在服务器与发送公钥S给客户端时,黑客将公钥S替换为自己的公钥P,那么客户端接受公钥P后,再以此公钥加密对称密钥M给服务器时,黑客就能截获此密钥。所以再后续的信息传送的过程中,该密钥M已不能保证信息的安全了。

这种黑客攻击的方式也称为“中间人攻击(MITM)”。

4.非对称加密+对称加密+CA认证

 在探讨该方式前需要先几个概念:

a.数据摘要

  • 数据摘要(数字指纹):其基本原理是利⽤单向散列函数(Hash函数)对信息进⾏运算,⽣成⼀串固定⻓度的数字摘要。数字指纹并不是⼀种加密机制,但可以⽤来判断数据有没有被窜改。
  • 摘要常⻅算法:有MD5、SHA1、SHA256、SHA512等,算法把⽆限的映射成有限,因此可能会有碰撞(两个不同的信息,算出的摘要相同,但是概率⾮常低)
  • 摘要特征:和加密算法的区别是,摘要严格意义不是加密,因为没有解密,只不过从摘要很难反推原信息,通常⽤来进⾏数据对⽐

b.数字签名

  • 摘要经过加密后就得到数字签名

 CA认证
服务端在使⽤HTTPS前,需要向CA机构申领⼀份数字证书,数字证书⾥含有证书申请者信息、公钥信息等。服务器把证书传输给浏览器,浏览器从证书⾥获取公钥就⾏了,证书就如⾝份证,证明服务端公钥的权威性。CA认证也就是相当于第三方,为我们提供一个辅助验证的功能。

当服务端申请CA证书的时候,CA机构会对该服务端进⾏审核,并专⻔为该⽹站形成数字签名,过程如下:
1. CA机构拥有⾮对称加密的私钥A和公钥A'
2. CA机构对服务端申请的证书明⽂数据进⾏hash,形成数据摘要
3. 然后对数据摘要⽤CA私钥A'加密,得到数字签名S
服务端申请的证书明⽂和数字签名S共同组成了数字证书,这样⼀份数字证书就可以颁发给服务端了。

加密原理

服务器需要先向CA机构申领一份数字证书,在客户端和服务器刚⼀建⽴连接的时候,服务器给客户端返回⼀个证书,证书包含了之前服务端的公钥,也包含了网站的身份信息。
当客户端获取到这个证书之后,会对证书进⾏校验(防止证书是伪造的)。

  • 判定证书的有效期是否过期
  • 判定证书的发布机构是否受信任(操作系统中已内置的受信任的证书发布机构).
  • 验证证书是否被篡改:从系统中拿到该CA机构的公钥,对签名解密,得到⼀个hash值(称为数据摘要),设为hash1.然后计算整个证书的hash值,设为hash2.对⽐hash1和hash2是否相等.如果相等,则说明证书是没有被篡改过的。

只有当客户端验证该证书不是伪造的后,客户端再使用证书上的公钥对对称密钥进行加密,然后再发送给服务器,服务器再用自己的私钥进行解密,就得到了对称密钥,后续服务器与客户端就使用该对称密钥进行通信。

 解答你的几个疑问:

1.中间⼈有没有可能篡改该证书?

答:中间⼈即使篡改了证书的明⽂,由于他没有CA机构的私钥,所以⽆法hash之后⽤私钥加密形成签名,那么也就没法办法对篡改后的证书形成匹配的签名如果强⾏篡改,客⼾端收到该证书后会发现明⽂和签名解密后的值不⼀致,则说明证书已被篡改,证书不可信,从⽽终⽌向服务器传输信息,防⽌信息泄露给中间⼈。
2.中间⼈可能整个掉包证书吗?

答:因为中间⼈没有CA私钥,所以⽆法制作假的证书,所以中间⼈只能向CA申请真证书,然后⽤⾃⼰申请的证书进⾏掉包这个确实能做到证书的整体掉包,但是别忘记,证书明⽂中包含了域名等服务端认证信息,如果整体掉包,客户端依旧能够识别出来。永远记住:中间⼈没有CA私钥,所以对任何证书都⽆法进⾏合法修改,包括⾃⼰的。
 

六、总结

对称加密虽然性能好但是有密钥泄漏的风险,非对称加密(2组公钥+2私钥双向传输)安全但性能低下,因此考虑用非对称加密来传输对称加密所需的密钥,然后进行对称加密,但是为了防止非对称过程产生的中间人攻击,我们就引入第三方辅助认证,需要对服务器公钥和服务器身份进行配对的数字认证,CA认证+非对称加密+对称加密的方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53713.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pytorch06-复杂模型构建

https://github.com/ExpressGit/Pytorch_Study_Demo 1、PyTorch 复杂模型构建 1、模型截图2、模型部件实现3、模型组装 2、模型定义 2.1、Sequential 1、当模型的前向计算为简单串联各个层的计算时, Sequential 类可以通过更加简单的方式定义模型。2、可以接收…

HTML5岗位技能实训室建设方案

一 、系统概述 HTML5岗位技能技术是计算机类专业重要的核心课程,课程所包含的教学内容多,实践性强,并且相关技术更新快。传统的课堂讲授模式以教师为中心,学生被动式接收,难以调动学生学习的积极性和主动性。混合式教学…

Linux--进程地址空间

1.线程地址空间 所谓进程地址空间(process address space),就是从进程的视角看到的地址空间,是进程运行时所用到的虚拟地址的集合。 简单地说,进程就是内核数据结构和代码和本身的代码和数据,进程本身不能…

【Linux】socket 编程基础

文章目录 📕 网络间的通信📕 socket 是什么1. socket 套接字2. 套接字描述符3. 基本的 socket 接口函数3.1 头文件3.2 socket() 函数3.3 bind() 函数struct sockaddr主机序列与网络序列 3.4 listen() 函数3.5 connect() 函数3.6 accept() 函数IP 地址风格…

3.BGP状态机和路由注入方式

BGP状态机 BGP路由的生成 不同于IGP路由协议,BGP自身并不会发现并计算产生路由,BGP将GP路由表中的路由注入到BGP路由表中,并通过Update报文传递给BGP对等体。 BGP注入路由的方式有两种: Networkimport-route与IGP协议相同,BGP支持根据已有的路由条目进行聚合,生成聚合路由…

Java 时间日期处理,工作必用(建议收藏)

工作中经常会遇到对时间日期进行处理的业务,像日期类的API个人觉得不需要背,需要的时候去查资料就行。我整理了Java8之前及之后日期类常用的时间日期处理方法,方便工作需要时查找,觉得有用的朋友可以收藏。 一、日期格式化和解析 …

linux挂载内网镜像源文件,支持yum安装

cd /etc/yum.repos.d/vim kylin_aarch64.repo 重建yum缓存 yum clean allyum makecacheyum repolist

RH1288V3 - 初识物理服务器

如果你拥有一台物理服务器(不是云服务器) 个人比较推荐你用物理服务器,虽然性能会比云要来的差,但是不用每月交钱上。云服务固然方便,但是几个核的性能和一点存储,想做一个动漫网站固然要很多mp4这种影视资源,云服务器…

积跬步至千里 || 数学基础、算法与编程

数学基础、算法与编程 1. BAP 技能 BAP 技能是指基础(Basic)、算法(Algorithm)和编程(Programm)三种基本技能的深度融合。理工科以数学、算法与编程为根基,这三个相辅相成又各有区别。 (1)数学以线性代数为主要研究工具和部分微积分技术为手…

最新绕过目标域名CDN进行信息收集技术

绕过目标域名CDN进行信息收集 1.CDN简介及工作流程 CDN(Content Delivery Network,内容分发网络)的目的是通过在现有的网络架构中增加一层新的Cache(缓存)层,将网站的内容发布到最接近用户的网…

打开软件提示msvcp140.dll丢失的解决方法,msvcp140主要丢失原因

今天,我将为大家介绍一种非常常见的问题——msvcp140.dll丢失。这个问题可能会导致许多应用程序无法正常运行,甚至崩溃。但是,请不要担心,我会为大家提供5种解决方法,帮助大家轻松解决问题。 首先,我们来看…

单片机学习-蜂鸣器电子元件

蜂鸣器是有什么作用的? 蜂鸣器 是 一种 一体化结构 的电子训响器,可以发出声音的电子元器件 蜂鸣器分类? ①压电式蜂鸣器(图左) 称: 无源蜂鸣器 ②电磁式蜂鸣器(图右) 称&#xf…

陪诊系统源码开发:实现个性化医疗陪护的创新之路

陪诊系统的源码开发在现代医疗中具有重要意义。本文将通过代码示例介绍陪诊系统的源码开发,展示如何实现个性化医疗陪护的创新方案。 1. 安装和环境设置: 首先,确保你的开发环境中已经安装了合适的编程语言和框架,比如Python和…

人力资源小程序的设计原则与实现方法

随着移动互联网的快速发展,小程序成为了各行各业推广和服务的新利器。对于人力资源行业来说,开发一款定制化的小程序不仅可以提升服务效率,还可以增强品牌形象和用户粘性。那么,如何定制开发人力资源类的小程序呢?下面…

使用Miniconda

Conda是一个开源的包和环境管理器,使用它可以在同一台机器上安装不同版本的Python软件包和依赖了。Anaconda和Miniconda都集成了Conda,Anaconda包括更多的工具包,Miniconda则只包括Conda和Python。 在很奇葩的Deepin下Miniconda安装之旅 中,…

8路光栅尺磁栅尺编码器或16路高速DI脉冲信号转Modbus TCP网络模块 YL99-RJ45

特点: ● 光栅尺磁栅尺解码转换成标准Modbus TCP协议 ● 高速光栅尺磁栅尺4倍频计数,频率可达5MHz ● 模块可以输出5V的电源给光栅尺或传感器供电 ● 支持8个光栅尺同时计数,可识别正反转 ● 可以设置作为16路独立DI高速计数器 ● 可网…

探讨uniapp的组件使用的问题

1 view Flex是Flexible Box的缩写,意为“弹性布局”,用来为盒状模型提供最大的灵活性。 当设置display: flex后,继续给view等容器组件设置flex-direction:row或column,就可以在该容器内按行或列排布子组件。uni-app推荐使用flex布…

LeetCode——有效的括号

这里,我提供一种用栈来解决的方法: 思路:栈的结构是先进后出,这样我们就可以模拟栈结构了,如果是‘(’、‘{’、‘[’任何一种,直接push进栈就可以了,如果是‘}’、‘)’…

Windows部署SQL Server-开发者版

一、简介 SQL Server 开发者版本,是一个为开发人员准备的版本。它是免费的,但不能在生产中使用它。它包含所有 SQL Server 企业版的功能,但不能在生产中部署,是一个用于非生产环境的免费版本。 二、下载 访问 https://www.mic…

Zabbix监控系统最新版安装

setenforce 0 设置SELinux 成为permissive模式 临时关闭selinux的 [rootwww yum.repos.d]# curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo % Total % Received % Xferd Average Speed Time Time Time Current …