分享一波:程序员赚外快-必看的巅峰干货
介绍
随着java的发展,越来越多的企业开始使用 java8 版本。Java8 是自 java5之后最重要的版本,这个版本包含语言、编译器、库、工具、JVM等方面的十多个新特性。本次课程将着重学习其中的一些重点特性。
Jdk8新增的特性如下:
Lambda表达式 类似于ES6中的箭头函数
新的日期API Datetime
引入Optional 防止空指针异常
使用Base64
接口的默认方法和静态方法
新增方法引用格式
新增Stream类
注解相关的改变
支持并行(parallel)数组
对并发类(Concurrency)的扩展。
JavaFX
接口新特性
接口默认方法
当我们去实现某个框架提供的一个接口时,需要实现其所有的抽象方法,当该框架更新版本,在这个借口中加入了新的抽象方法时,我们就需要对项目重新编译,并且实现其新增的方法。
当实现类太多时,操作起来很麻烦。
JDK之前是使用开闭设计模式:对扩展开放,对修改关闭。即:创建一个新的接口,继承原有的接口,定义新的方法。
但是这样的话,原本的那些实现类并没有新的方法
这时候可以使用接口默认方法
关键字使用default进行修饰, 方法需要方法体。这样的方法所有的子类会默认实现(不用自己写),如果想要覆盖重写,也可以在实现类中覆盖重写
/**
-
从java8开始,接口当中允许定义default默认方法
-
修饰符:public default(public可以省略,default不能省略)
*/
public interface MyInterface {void method1();
void method2();
default void methodNew() {
System.out.println(“接口默认方法执行”);
}
}
这里需要注意的是:这里的default是jdk8新增的关键字,和访问限定修饰符“default”不是一个概念,与switch中的default功能完全不同.
与抽象类的不同:抽象类更多的是提供一个模板,子类之间的某个流程大致相同,仅仅是某个步骤可能不一样(模板方法设计模式),这个时候使用抽象类,该步骤定义为抽象方法。而default关键字是用于扩展
接口静态方法
/**
-
从java8开始,接口当中允许定义静态方法
-
修饰符:static xxx
-
一般类的静态方法用法相同
*/
public interface Animal {void eat();
static Animal getAnimal() {
return new Cat();
}
}
接口的静态方法不会被实现类所继承
函数式接口
概念
函数式接口在Java中是指:有且仅有一个抽象方法的接口。
函数式接口,即适用于函数式编程场景的接口。而Java中的函数式编程体现就是Lambda,所以函数式接口就是可以适用于Lambda使用的接口。只有确保接口中有且仅有一个抽象方法,Java中的Lambda才能顺利地进行推导。
格式
确保接口中有且只有一个抽象方法即可
Public interface 接口名称 {
返回值 方法名称();
}
@FunctionalInterface注解
有的注解是在编译期起作用,如@Override注解。而@FunctionalInterface也是在编译期起作用。该注解是java8专门为函数式接口引入的新的注解,作用于一个接口上。
一旦使用该注解来定义接口,编译期会强制检查该接口是否符合函数式接口的条件,不符合则会报错。需要注意的是:即使不使用该注解,只要满足函数式接口的定义,这就是一个函数式接口。
@FunctionalInterface
public interface MyFunctionalInterface {
void myMethod();
}
自定义函数式接口
public class DemoFunctionalInterface {
// 使用自定义的函数式接口作为方法参数
private static void doSomething(MyFunctionalInterface inter) {inter.myMethod();
}public static void main(String[] args) {// 调用使用函数式接口的方法doSomething(() -> System.out.println("乌鸦坐飞机"));
}
}
Lambda表达式
在面向对象的基础上,java8 通过Lambda表达式与方法引用等,为开发者打开了函数式编程的大门。Lambda表达式不是语法糖,而是新的语法
语法
三要素:参数、箭头、代码
(参数类型 参数1, 参数类型 参数2…) -> {代码}
如果参数有多个,那么使用逗号分隔。如果参数没有,则留空
箭头是固定写法
大括号相当于方法体。
使用Lambda表达式的必要前提:必须是函数式接口
Lambda 省略规则
参数类型可以省略。但是只能同时省略所有参数的类型,或者干脆都不省略。
如果参数有且仅有一个,那么小括号可以省略。
如果大括号内的语句有且仅有一条,那么无论是否有返回值,return、大括号、分号都可以省略
Lambda的延迟执行
有些场景的代码执行后,结果不一定会被使用,从而造成性能浪费。而Lambda表达式是延迟执行的,这正好可以作为解决方案,提升性能。
性能浪费的案例
public class Demo01Logger {
private static void log(int level, String msg) {
if (level == 1) {
System.out.println(msg);
}
}
public static void main(String[] args) {String msgA = "Hello";String msgB = "World";String msgC = "Java";log(1, msgA + msgB + msgC);
}
}
这段代码存在问题:无论级别是否满足要求,作为 log 方法的第二个参数,三个字符串一定会首先被拼接并传入方法内,然后才会进行级别判断。如果级别不符合要求,那么字符串的拼接操作就白做了,存在性能浪费。
Lambda的优化写法
@FunctionalInterface
public interface MessageBuilder {
String buildMessage();
}
public class Demo02LoggerLambda {
private static void log(int level, MessageBuilder builder) {
if (level == 1) {
System.out.println(builder.buildMessage());
}
}
public static void main(String[] args) {String msgA = "Hello";String msgB = "World";String msgC = "Java";log(1, () -> msgA + msgB + msgC );
}
}
这样一来,只有当满足条件的时候才会进行三个字符串的拼接。否则不会拼接。
证明Lambda的延迟
public class Demo03LoggerDelay {
private static void log(int level, MessageBuilder builder) {
if (level == 1) {
System.out.println(builder.buildMessage());
}
}
public static void main(String[] args) {String msgA = "Hello";String msgB = "World";String msgC = "Java";log(2, () -> {System.out.println("Lambda执行!");return msgA + msgB + msgC;});
}
}
从结果可以看出,在不符合要求的情况下,lambda将不会执行
使用Lambda作为参数和返回值
如果抛开实现原理不说,Java中的Lambda表达式可以被当作是匿名内部类的替代品。如果方法的参数是一个函数式接口类型,那么就可以使用Lambda表达式进行替代。使用Lambda表达式作为方法参数,其实就是使用函数式接口作为方法参数。
例如 java.lang.Runnable 接口就是一个函数式接口,假设有一个 startThread 方法使用该接口作为参数,那么就可以使用Lambda进行传参。这种情况其实和 Thread 类的构造方法参数为 Runnable 没有本质区别。
public class Demo04Runnable {
private static void startThread(Runnable task) {
new Thread(task).start();
}
public static void main(String[] args) {startThread(() -> System.out.println("线程任务执行!"));
}
}
类似地,如果一个方法的返回值类型是一个函数式接口,那么就可以直接返回一个Lambda表达式。当需要通过一个方法来获取一个 java.util.Comparator 接口类型的对象作为排序器时,就可以调该方法获取
public class Demo06Comparator {
private static Comparator newComparator() {
return (a, b) -> b.length() - a.length();
}
public static void main(String[] args) {String[] array = {"abc", "ab", "abcd"};System.out.println(Arrays.toString(array));Arrays.sort(array, newComparator());System.out.println(Arrays.toString(array));
}
}
常用函数式接口
JDK提供了大量的函数式接口以及丰富的Lambda应用场景。下面是最简单的几个接口以及使用实例
Supplier
java.util.function.Supplier 接口仅包含一个无参的方法: T get() 。用来获取一个泛型参数指定类型的对象数据。由于这是一个函数式接口,这也就意味着对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。
public class Demo08Supplier {
private static String getString(Supplier function) {
return function.get();
}
public static void main(String[] args) {String msgA = "Hello";String msgB = "World";System.out.println(getString(() -> msgA + msgB));
}
}
练习:求数组元素的最小值
public class Demo02Test {
//定一个方法,方法的参数传递Supplier,泛型使用Integer
public static int getMax(Supplier sup) {
return sup.get();
}
public static void main(String[] args) {int arr[] = {2, 3, 4, 52, 333, 23};//调用getMax方法,参数传递Lambda int maxNum = getMax(() -> {//计算数组的最大值 int max = arr[0];for (int i : arr) {if (i > max) {max = i;}}return max;});System.out.println(maxNum);
}
}
Consumer接口
java.util.function.Consumer 接口则正好与Supplier接口相反,它不是生产一个数据,而是消费一个数据,
其数据类型由泛型决定。
抽象方法:accept,意为消费一个指定泛型的数据
public class Demo09Consumer {
private static void consumeString(Consumer function) {
function.accept(“Hello”);
}
public static void main(String[] args) {consumeString(s -> System.out.println(s));
}
}
默认方法:andThen
如果一个方法的参数和返回值全都是 Consumer 类型,那么就可以实现效果:消费数据的时候,首先做一个操作,然后再做一个操作,实现组合。而这个方法就是 Consumer 接口中的default方法 andThen
要想实现组合,需要两个或多个Lambda表达式即可,而 andThen 的语义正是“一步接一步”操作。例如两个步骤组合的情况
public class Demo10ConsumerAndThen {
private static void consumeString(Consumer one, Consumer two) {
one.andThen(two).accept(“Hello”);
}
public static void main(String[] args) {consumeString(s -> System.out.println(s.toUpperCase()), s -> System.out.println(s.toLowerCase()));
}
}
练习:格式化打印信息
下面的字符串数组当中存有多条信息,请按照格式“ 姓名:XX。性别:XX。 ”的格式将信息打印出来。要求将打印姓名的动作作为第一个 Consumer 接口的Lambda实例,将打印性别的动作作为第二个 Consumer 接口的Lambda实例,将两个 Consumer 接口按照顺序“拼接”到一起。
public class DemoConsumer {
public static void main(String[] args) {
String[] array = {“迪丽热巴,女”, “古力娜扎,女”, “马尔扎哈,男”};
printInfo(s -> System.out.print(“姓名:” + s.split(",")[0]), s ->
System.out.println("。性别:" + s.split(",")[1] + “。”), array);
}
private static void printInfo(Consumer<String> one, Consumer<String> two, String[] array) {for (String info : array) {one.andThen(two).accept(info); // 姓名:迪丽热巴。性别:女。 }
}
}
Predicate接口
有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用java.util.function.Predicate 接口。
抽象方法:test
Predicate 接口中包含一个抽象方法: boolean test(T t) 。用于条件判断的场景:
public class Demo15PredicateTest {
private static void method(Predicate predicate) {
boolean veryLong = predicate.test(“HelloWorld”);
System.out.println(“字符串很长吗:” + veryLong);
}
public static void main(String[] args) {method(s -> s.length() > 5);
}
}
条件判断的标准是传入lambda表达式逻辑
默认方法:and
既然是条件判断,就会存在与、或、非三种常见的逻辑关系。其中将两个 Predicate 条件使用“与”逻辑连接起来实现“并且”的效果时,可以使用default方法 and
如果要判断一个字符串既要包含大写“H”,又要包含大写“W”
public class Demo16PredicateAnd {
private static void method(Predicate one, Predicate two) {
boolean isValid = one.and(two).test(“Helloworld”);
System.out.println(“字符串符合要求吗:” + isValid);
}
public static void main(String[] args) {method(s -> s.contains("H"), s -> s.contains("W"));
}
}
默认方法:or
如果希望实现逻辑“字符串包含大写H或者包含大写W”,那么代码只需要将“and”修改为“or”名称即可,其他都不变:
默认方法:negate
表示取反
public class Demo17PredicateNegate {
private static void method(Predicate predicate) {
boolean veryLong = predicate.negate().test(“HelloWorld”);
System.out.println(“字符串很长吗:” + veryLong);
}
public static void main(String[] args) {method(s -> s.length() < 5);
}
}
练习:集合信息筛选
数组当中有多条“姓名+性别”的信息如下,请通过 Predicate 接口的拼装将符合要求的字符串筛选到集合ArrayList 中,需要同时满足两个条件:
-
必须为女生;
-
姓名为4个字。
public class DemoPredicate {
public static void main(String[] args) {
String[] array = {“迪丽热巴,女”, “古力娜扎,女”, “马尔扎哈,男”, “赵丽颖,女”};
List list = filter(array, s -> “女”.equals(s.split(",")[1]), s -> s.split(",")[0].length() == 4);
System.out.println(list);
}
private static List<String> filter(String[] array, Predicate<String> one, Predicate<String> two) {List<String> list = new ArrayList<>();for (String info : array) {if (one.and(two).test(info)) {list.add(info);}}return list;
}
}
Function接口
java.util.function.Function<T,R> 接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件,后者称为后置条件。
抽象方法:apply
Function 接口中最主要的抽象方法为: R apply(T t) ,根据类型T的参数获取类型R的结果。使用的场景例如:将 String 类型转换为 Integer 类型
public class Demo11FunctionApply {
private static void method(Function<String, Integer> function) {
int num = function.apply(“10”);
System.out.println(num + 20);
}
public static void main(String[] args) {method(s -> Integer.parseInt(s));
}
}
默认方法:andThen
public class Demo12FunctionAndThen {
private static void method(Function<String, Integer> one, Function<Integer, Integer> two) {
int num = one.andThen(two).apply(“10”);
System.out.println(num + 20);
}
public static void main(String[] args) {method(str -> Integer.parseInt(str) + 10, i -> i *= 10);
}
}
练习:自定义函数模型拼接
请使用 Function 进行函数模型的拼接,按照顺序需要执行的多个函数操作为:
String str = “赵丽颖,20”;
-
将字符串截取数字年龄部分,得到字符串;
-
将上一步的字符串转换成为int类型的数字;
-
将上一步的int数字累加100,得到结果int数字。
public class DemoFunction {
public static void main(String[] args) {
String str = “赵丽颖,20”;
int age = getAgeNum(str, s -> s.split(",")[1], s -> Integer.parseInt(s), n -> n += 100);
System.out.println(age);
}
private static int getAgeNum(String str, Function<String, String> one, Function<String, Integer> two, Function<Integer, Integer> three) {return one.andThen(two).andThen(three).apply(str);
}
}
方法引用
冗余的Lambda场景
在使用Lambda表达式的时候,我们实际上传递进去的代码就是一种解决方案:拿什么参数做什么操作。那么考虑一种情况:如果我们在Lambda中所指定的操作方案,已经有地方存在相同方案,那是否还有必要再写重复逻辑?
先看一个简单的函数式接口
@FunctionalInterface
public interface Printable {
void print(String str);
}
public class Demo01PrintSimple {
private static void printString(Printable data) {
data.print(“Hello, World!”);
}
public static void main(String[] args) {printString(s -> System.out.println(s));
}
}
其中 printString 方法只管调用 Printable 接口的 print 方法,而并不管 print 方法的具体实现逻辑会将字符串打印到什么地方去。而 main 方法通过Lambda表达式指定了函数式接口 Printable 的具体操作方案为:拿到String(类型可推导,所以可省略)数据后,在控制台中输出它。
问题分析
这段代码的问题在于,对字符串进行控制台打印输出的操作方案,明明已经有了现成的实现,那就是 System.out对象中的 println(String) 方法。既然Lambda希望做的事情就是调用println(String) 方法,那何必自己手动调用呢?
能否省去Lambda的语法格式(尽管它已经相当简洁)呢?只要“引用”过去就好了:
public class Demo02PrintRef {
private static void printString(Printable data) {
data.print(“Hello, World!”);
}
public static void main(String[] args) {printString(System.out::println);
}
}
请注意其中的双冒号 :: 写法,这被称为“方法引用”,而双冒号是一种新的语法。
方法引用符
双冒号 :: 为引用运算符,而它所在的表达式被称为方法引用。如果Lambda要表达的函数方案已经存在于某个方法的实现中,那么则可以通过双冒号来引用该方法作为Lambda的替代者。
语义分析
例如上例中, System.out 对象中有一个重载的 println(String) 方法恰好就是我们所需要的。那么对printString 方法的函数式接口参数,对比下面两种写法,完全等效:
Lambda表达式写法: s -> System.out.println(s);
方法引用写法: System.out::println
第一种语义是指:拿到参数之后经Lambda之手,继而传递给 System.out.println 方法去处理。
第二种等效写法的语义是指:直接让 System.out 中的 println 方法来取代Lambda。两种写法的执行效果完全一样,而第二种方法引用的写法复用了已有方案,更加简洁。
注:Lambda 中 传递的参数 一定是方法引用中 的那个方法可以接收的类型,否则会抛出异常
推导与省略
如果使用Lambda,那么根据“可推导就是可省略”的原则,无需指定参数类型,也无需指定的重载形式——它们都将被自动推导。而如果使用方法引用,也是同样可以根据上下文进行推导。
函数式接口是Lambda的基础,而方法引用是Lambda的孪生兄弟。
下面这段代码将会调用 println 方法的不同重载形式,将函数式接口改为int类型的参数:
@FunctionalInterface
public interface PrintableInteger {
void print(int str);
}
由于上下文变了之后可以自动推导出唯一对应的匹配重载,所以方法引用没有任何变化
public class Demo03PrintOverload {
private static void printInteger(PrintableInteger data) {
data.print(1024);
}
public static void main(String[] args) {printInteger(System.out::println);
}
}
通过对象名引用成员方法
这是最常见的一种用法,与上例相同。如果一个类中已经存在了一个成员方法:
public class MethodRefObject {
public void printUpperCase(String str) {
System.out.println(str.toUpperCase());
}
}
那么当需要使用这个 printUpperCase 成员方法来替代 Printable 接口的Lambda的时候,已经具有了MethodRefObject 类的对象实例,则可以通过对象名引用成员方法,代码为:
public class Demo04MethodRef {
private static void printString(Printable lambda) {
lambda.print(“Hello”);
}
public static void main(String[] args) {MethodRefObject obj = new MethodRefObject();printString(obj::printUpperCase);
}
}
通过类名称引用静态方法
由于在 java.lang.Math 类中已经存在了静态方法 abs ,所以当我们需要通过Lambda来调用该方法时,有两种写法。首先是函数式接口:
@FunctionalInterface
public interface Calcable {
int calc(int num);
}
第一种写法使用Lambda
public class Demo05Lambda {
private static void method(int num, Calcable lambda) {
System.out.println(lambda.calc(num));
}
public static void main(String[] args) {method(-10, n -> Math.abs(n));
}
}
第二种使用方法引用
public class Demo06MethodRef {
private static void method(int num, Calcable lambda) {
System.out.println(lambda.calc(num));
}
public static void main(String[] args) {method(-10, Math::abs);
}
}
两种方式等价
通过super引用成员方法
如果存在继承关系,当Lambda中需要出现super调用时,也可以使用方法引用进行替代。首先是函数式接口:
@FunctionalInterface
public interface Greetable {
void greet();
}
父类Human的内容
public class Human {
public void sayHello() {
System.out.println(“Hello!”);
}
}
子类Man的内容
public class Man extends Human {
@Override
public void sayHello() {
System.out.println(“大家好,我是Man!”);
}
//定义方法method,参数传递Greetable接口
public void method(Greetable g) {g.greet();
}public void show() {//调用method方法,使用Lambda表达式 method(() -> {//创建Human对象,调用sayHello方法 new Human().sayHello();});//简化Lambda method(() -> new Human().sayHello());//使用super关键字代替父类对象 method(() -> super.sayHello());
}
}
但是如果使用方法引用会更好
public class Woman extends Human {
@Override
public void sayHello() {
System.out.println(“大家好,我是Man!”);
}
public void method(Greetable g) {g.greet();
}public void show() {method(super::sayHello);
}
}
通过this引用成员方法
this代表当前对象,如果需要引用的方法就是当前类中的成员方法,那么可以使用“this::成员方法”的格式来使用方法引用。首先是简单的函数式接口:
@FunctionalInterface
public interface Richable {
void buy();
}
public class Husband {
private void marry(Richable lambda) {
lambda.buy();
}
public void beHappy() {marry(() -> System.out.println("买套房子"));
}
}
开心方法 beHappy 调用了结婚方法 marry ,后者的参数为函数式接口 Richable ,所以需要一个Lambda表达式。但是如果这个Lambda表达式的内容已经在本类当中存在了,则可以对 Husband 丈夫类进行修改:
public class Husband {
private void buyHouse() {
System.out.println(“买套房子”);
}
private void marry(Richable lambda) {lambda.buy();
}public void beHappy() {marry(this::buyHouse);
}
}
Stream流
说到Stream便容易想到I/O Stream,而实际上,在Java 8中,得益于Lambda所带来的函数式编程,引入了一个全新的Stream概念,用于解决已有集合类库既有的弊端。
Stream流式操作性能比传统的For循环要低,就性能而言,传统的for循环最高
传统集合的遍历代码
几乎所有的集合(如 Collection 接口或 Map 接口等)都支持直接或间接的遍历操作。而当我们需要对集合中的元素进行操作的时候,除了必需的添加、删除、获取外,最典型的就是集合遍历。例如:
public class Demo01ForEach {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add(“张无忌”);
list.add(“周芷若”);
list.add(“赵敏”);
list.add(“张强”);
list.add(“张三丰”);
for (String name : list) {
System.out.println(name);
}
}
}
循环遍历的弊端
Java 8的Lambda让我们可以更加专注于做什么(What),而不是怎么做(How),这点此前已经结合内部类进行了对比说明。现在,我们仔细体会一下上例代码,可以发现:
for循环的语法就是“怎么做”
for循环的循环体才是“做什么”
为什么使用循环?因为要进行遍历。但循环是遍历的唯一方式吗?遍历是指每一个元素逐一进行处理,而并不是从第一个到最后一个顺次处理的循环。前者是目的,后者是方式。
试想一下,如果希望对集合中的元素进行筛选过滤:
将集合A根据条件一过滤为子集B;
然后再根据条件二过滤为子集C。
那怎么办?在Java 8之前的做法可能为:
public class Demo02NormalFilter {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add(“张无忌”);
list.add(“周芷若”);
list.add(“赵敏”);
list.add(“张强”);
list.add(“张三丰”);
List zhangList = new ArrayList<>();
for (String name : list) {
if (name.startsWith(“张”)) {
zhangList.add(name);
}
}
List shortList = new ArrayList<>();
for (String name : zhangList) {
if (name.length() == 3) {
shortList.add(name);
}
}
for (String name : shortList) {
System.out.println(name);
}
}
}
这段代码中含有三个循环,每一个作用不同:
-
首先筛选所有姓张的人;
-
然后筛选名字有三个字的人;
-
最后进行对结果进行打印输出。
每当我们需要对集合中的元素进行操作的时候,总是需要进行循环、循环、再循环。这是理所当然的么?不是。循环是做事情的方式,而不是目的。另一方面,使用线性循环就意味着只能遍历一次。如果希望再次遍历,只能再使用另一个循环从头开始。
那,Lambda的衍生物Stream能给我们带来怎样更加优雅的写法呢?
Stream更优写法
public class Demo03StreamFilter {
public static void main(String[] args) {
List list = new ArrayList<>();
list.add(“张无忌”);
list.add(“周芷若”);
list.add(“赵敏”);
list.add(“张强”);
list.add(“张三丰”);
list.stream().filter(s -> s.startsWith(“张”))
.filter(s -> s.length() == 3)
.forEach(System.out::println);
}
}
直接阅读代码的字面意思即可完美展示无关逻辑方式的语义:获取流、过滤姓张、过滤长度为3、逐一打印。代码中并没有体现使用线性循环或是其他任何算法进行遍历,我们真正要做的事情内容被更好地体现在代码中。
获取流
java.util.stream.Stream 是Java 8新加入的最常用的流接口。(这并不是一个函数式接口。)
获取一个流非常简单,有以下几种常用的方式:
所有的 Collection 集合都可以通过 stream 默认方法获取流;
Stream 接口的静态方法 of 可以获取数组对应的流。
根据Collection获取流
首先, java.util.Collection 接口中加入了default方法 stream 用来获取流,所以其所有实现类均可获取流。
public class Demo04GetStream {
public static void main(String[] args) {
List list = new ArrayList<>();
Stream stream1 = list.stream();
Set set = new HashSet<>();
Stream stream2 = set.stream();
}
}
根据Map获取流
java.util.Map 接口不是 Collection 的子接口,且其K-V数据结构不符合流元素的单一特征,所以获取对应的流
需要分key、value或entry等情况:
public class Demo05GetStream {
public static void main(String[] args) {
Map<String, String> map = new HashMap<>();
Stream keyStream = map.keySet().stream();
Stream valueStream = map.values().stream();
Stream<Map.Entry<String, String>> entryStream = map.entrySet().stream();
}
}
根据数组获取流
如果使用的不是集合或映射而是数组,由于数组对象不可能添加默认方法,所以 Stream 接口中提供了静态方法
of ,使用很简单:
public class Demo06GetStream {
public static void main(String[] args) {
String[] array = {“张无忌”, “张翠山”, “张三丰”, “张一元”};
Stream stream = Stream.of(array);
}
}
常用方法
逐一处理:forEach
虽然方法名字叫forEach,但是与for循环不同
基本使用
public class Demo12StreamForEach {
public static void main(String[] args) {
Stream stream = Stream.of(“张无忌”, “张三丰”, “周芷若”);
stream.forEach(name -> System.out.println(name));
}
}
过滤:filter
可以通过 filter 方法将一个流转换成另一个子集流
public class Demo07StreamFilter {
public static void main(String[] args) {
Stream original = Stream.of(“张无忌”, “张三丰”, “周芷若”);
Stream result = original.filter(s -> s.startsWith(“张”));
}
}
在这里通过Lambda表达式来指定了筛选的条件:必须姓张。
映射:map
如果需要将流中的元素映射到另一个流中,可以使用 map 方法。方法签名:
public class Demo08StreamMap {
public static void main(String[] args) {
Stream original = Stream.of(“10”, “12”, “18”);
Stream result = original.map(str -> Integer.parseInt(str));
}
}
这段代码中, map 方法的参数通过方法引用,将字符串类型转换成为了int类型(并自动装箱为 Integer 类对象)。
统计个数:count
public class Demo09StreamCount {
public static void main(String[] args) {
Stream original = Stream.of(“张无忌”, “张三丰”, “周芷若”);
Stream result = original.filter(s -> s.startsWith(“张”));
System.out.println(result.count());
}
}
取用前几个:limit
public class Demo10StreamLimit {
public static void main(String[] args) {
Stream original = Stream.of(“张无忌”, “张三丰”, “周芷若”);
Stream result = original.limit(2);
System.out.println(result.count());
}
}
跳过前几个:skip
public class Demo11StreamSkip {
public static void main(String[] args) {
Stream original = Stream.of(“张无忌”, “张三丰”, “周芷若”);
Stream result = original.skip(2);
System.out.println(result.count());
}
}
组合:concat
如果有两个流,希望合并成为一个流,那么可以使用 Stream 接口的静态方法 concat
public class Demo12StreamConcat {
public static void main(String[] args) {
Stream streamA = Stream.of(“张无忌”);
Stream streamB = Stream.of(“张翠山”);
Stream result = Stream.concat(streamA, streamB);
}
}
练习:集合元素处理(传统方式)
现在有两个 ArrayList 集合存储队伍当中的多个成员姓名,要求使用传统的for循环(或增强for循环)依次进行以下若干操作步骤:
-
第一个队伍只要名字为3个字的成员姓名;存储到一个新集合中。
-
第一个队伍筛选之后只要前3个人;存储到一个新集合中。
-
第二个队伍只要姓张的成员姓名;存储到一个新集合中。
-
第二个队伍筛选之后不要前2个人;存储到一个新集合中。
-
将两个队伍合并为一个队伍;存储到一个新集合中。
-
根据姓名创建 Person 对象;存储到一个新集合中。
-
打印整个队伍的Person对象信息。
代码如下:
public class DemoArrayListNames {
public static void main(String[] args) {
ArrayList one = new ArrayList<>();
one.add(“迪丽热巴”);
one.add(“宋远桥”);
one.add(“苏星河”);
one.add(“石破天”);
one.add(“石中玉”);
one.add(“老子”);
one.add(“庄子”);
one.add(“洪七公”);
ArrayList two = new ArrayList<>();
two.add(“古力娜扎”);
two.add(“张无忌”);
two.add(“赵丽颖”);
two.add(“张三丰”);
two.add(“尼古拉斯赵四”);
two.add(“张天爱”);
two.add(“张二狗”);
// 第一个队伍只要名字为3个字的成员姓名;List<String> oneA = new ArrayList<>();for (String name : one) {if (name.length() == 3) {oneA.add(name);}}// 第一个队伍筛选之后只要前3个人; List<String> oneB = new ArrayList<>();for (int i = 0; i < 3; i++) {oneB.add(oneA.get(i));}// 第二个队伍只要姓张的成员姓名; List<String> twoA = new ArrayList<>();for (String name : two) {if (name.startsWith("张")) {twoA.add(name);}}// 第二个队伍筛选之后不要前2个人; List<String> twoB = new ArrayList<>();for (int i = 2; i < twoA.size(); i++) {twoB.add(twoA.get(i));}// 将两个队伍合并为一个队伍; List<String> totalNames = new ArrayList<>();totalNames.addAll(oneB);totalNames.addAll(twoB);// 根据姓名创建Person对象; List<Person> totalPersonList = new ArrayList<>();for (String name : totalNames) {totalPersonList.add(new Person(name));}}
}
public class Person {
private String name;
public Person() {
}public Person(String name) {this.name = name;
}
}
练习:集合元素处理(Stream方式)
public class DemoStreamNames {
public static void main(String[] args) {
List one = new ArrayList<>();
List two = new ArrayList<>();
// 第一个队伍只要名字为3个字的成员姓名;
// 第一个队伍筛选之后只要前3个人;
Stream streamOne = one.stream().filter(s -> s.length() == 3).limit(3);
// 第二个队伍只要姓张的成员姓名;
// 第二个队伍筛选之后不要前2个人;
Stream streamTwo = two.stream().filter(s -> s.startsWith(“张”)).skip(2);
// 将两个队伍合并为一个队伍;
// 根据姓名创建Person对象;
// 打印整个队伍的Person对象信息。
Stream.concat(streamOne, streamTwo).map(Person::new).forEach(System.out::println);
}
}
*************************************优雅的分割线 **********************************
分享一波:程序员赚外快-必看的巅峰干货
如果以上内容对你觉得有用,并想获取更多的赚钱方式和免费的技术教程
请关注微信公众号:HB荷包
一个能让你学习技术和赚钱方法的公众号,持续更新